调节Kresling塔动静态特性的嵌入式主动加劲机构

J. Berre, L. Rubbert, F. Geiskopf, P. Renaud
{"title":"调节Kresling塔动静态特性的嵌入式主动加劲机构","authors":"J. Berre, L. Rubbert, F. Geiskopf, P. Renaud","doi":"10.1109/ICRA48891.2023.10160882","DOIUrl":null,"url":null,"abstract":"Non-rigidly foldable origamis are of great interest to build robotic components, as they are light, offer large deployability and can also be multistable. In this paper, we consider the Kresling tower, and propose an original way to actively modulate its kinetostatic properties. Actuated stiffening mechanisms are embedded on some folds of the origami. By adjusting the axial stiffness of the folds, modulation of the axial stiffness and the force required to switch between stable configurations are demonstrated. This adjustment can in addition be performed independently from the height of the stable configurations, which makes it simple to use. The interest of fold stiffening is outlined experimentally. Three actuation strategies are considered and implemented. Impact on Kresling tower properties are shown, with complementary performances of pneumatic, SMA-based and DC motor actuation.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedded Active Stiffening Mechanisms to Modulate Kresling Tower Kinetostatic Properties\",\"authors\":\"J. Berre, L. Rubbert, F. Geiskopf, P. Renaud\",\"doi\":\"10.1109/ICRA48891.2023.10160882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-rigidly foldable origamis are of great interest to build robotic components, as they are light, offer large deployability and can also be multistable. In this paper, we consider the Kresling tower, and propose an original way to actively modulate its kinetostatic properties. Actuated stiffening mechanisms are embedded on some folds of the origami. By adjusting the axial stiffness of the folds, modulation of the axial stiffness and the force required to switch between stable configurations are demonstrated. This adjustment can in addition be performed independently from the height of the stable configurations, which makes it simple to use. The interest of fold stiffening is outlined experimentally. Three actuation strategies are considered and implemented. Impact on Kresling tower properties are shown, with complementary performances of pneumatic, SMA-based and DC motor actuation.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10160882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非刚性可折叠折纸对于制造机器人部件非常有兴趣,因为它们很轻,提供了很大的可展开性,也可以是多稳定的。本文以克雷斯林塔为研究对象,提出了一种主动调节其动静力特性的新颖方法。在折纸的一些褶皱上嵌入了驱动加强机构。通过调整折叠的轴向刚度,调制轴向刚度和稳定配置之间切换所需的力被证明。此外,这种调整可以独立于稳定配置的高度进行,这使得它易于使用。实验概述了褶皱加强的意义。考虑并实施了三种驱动策略。分析了气动驱动、sma驱动和直流电机驱动对Kresling塔性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded Active Stiffening Mechanisms to Modulate Kresling Tower Kinetostatic Properties
Non-rigidly foldable origamis are of great interest to build robotic components, as they are light, offer large deployability and can also be multistable. In this paper, we consider the Kresling tower, and propose an original way to actively modulate its kinetostatic properties. Actuated stiffening mechanisms are embedded on some folds of the origami. By adjusting the axial stiffness of the folds, modulation of the axial stiffness and the force required to switch between stable configurations are demonstrated. This adjustment can in addition be performed independently from the height of the stable configurations, which makes it simple to use. The interest of fold stiffening is outlined experimentally. Three actuation strategies are considered and implemented. Impact on Kresling tower properties are shown, with complementary performances of pneumatic, SMA-based and DC motor actuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信