{"title":"污染和温度对光伏发电退化影响的实验研究——以伊拉克东北部为例","authors":"Gufran Adnan Jendar, Layth Abed Hasnawi, Qusay Hassana, Bartosz Ceran, Abdulmajeed Mohamad","doi":"10.24237/djes.2022.15402","DOIUrl":null,"url":null,"abstract":"The main objectives of this study are to assess the degradation of power, voltage and current for photovoltaic (PV) modules in predicting temperature and soiling based on five-month measurements. This study aimed to present simple experimental models for estimating the temperature and effects of dust on PV power generation. Results demonstrated that soiling short-circuit current loss underestimates the real soiling power loss by approximately 8%, and this value rises with the increase in dust density. The soiling rate during the week of dust deposition was 0.3% per day and during the final week was 0.15% per day. Results indicate that the polynomial model from the second degree is more accurate than the linear and power models for evaluating the influence of dust on PV systems in the case study. The results suggest that such analysis is required to arrive at a realistic estimation of the best cleaning time in PV power plants.","PeriodicalId":294128,"journal":{"name":"Diyala Journal of Engineering Sciences","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Investigation of Soiling and Temperature Impact on PV Power Degradation: North East-Iraq as A Case Study\",\"authors\":\"Gufran Adnan Jendar, Layth Abed Hasnawi, Qusay Hassana, Bartosz Ceran, Abdulmajeed Mohamad\",\"doi\":\"10.24237/djes.2022.15402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objectives of this study are to assess the degradation of power, voltage and current for photovoltaic (PV) modules in predicting temperature and soiling based on five-month measurements. This study aimed to present simple experimental models for estimating the temperature and effects of dust on PV power generation. Results demonstrated that soiling short-circuit current loss underestimates the real soiling power loss by approximately 8%, and this value rises with the increase in dust density. The soiling rate during the week of dust deposition was 0.3% per day and during the final week was 0.15% per day. Results indicate that the polynomial model from the second degree is more accurate than the linear and power models for evaluating the influence of dust on PV systems in the case study. The results suggest that such analysis is required to arrive at a realistic estimation of the best cleaning time in PV power plants.\",\"PeriodicalId\":294128,\"journal\":{\"name\":\"Diyala Journal of Engineering Sciences\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diyala Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24237/djes.2022.15402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diyala Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24237/djes.2022.15402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Investigation of Soiling and Temperature Impact on PV Power Degradation: North East-Iraq as A Case Study
The main objectives of this study are to assess the degradation of power, voltage and current for photovoltaic (PV) modules in predicting temperature and soiling based on five-month measurements. This study aimed to present simple experimental models for estimating the temperature and effects of dust on PV power generation. Results demonstrated that soiling short-circuit current loss underestimates the real soiling power loss by approximately 8%, and this value rises with the increase in dust density. The soiling rate during the week of dust deposition was 0.3% per day and during the final week was 0.15% per day. Results indicate that the polynomial model from the second degree is more accurate than the linear and power models for evaluating the influence of dust on PV systems in the case study. The results suggest that such analysis is required to arrive at a realistic estimation of the best cleaning time in PV power plants.