3路耦合硅脊波导中的冻光模式

Raed Almhmadi, K. Sertel
{"title":"3路耦合硅脊波导中的冻光模式","authors":"Raed Almhmadi, K. Sertel","doi":"10.23919/USNC-URSI-NRSM.2019.8713100","DOIUrl":null,"url":null,"abstract":"Frozen-light modes supported by the stationary inflection point (SIP) within the pass band of 3-way coupled periodic silicon ridge waveguides is demonstrated. Precise tuning of the coupling between forward and backward propagating modes lead to mode degeneracy with vanishing group velocity. The unit cell is tuned to obtain the SIP on the third branch in the dispersion diagram. Subsequently, we demonstrate a finite structure with 23 unit cells to support the frozen mode at the SIP frequency. For this example, the group velocity at the SIP is 385 times slower than speed of light in vacuum. Transmission resonances of the finite structure, as well as the field distribution within the device at the SIP frequency are studied and presented.","PeriodicalId":142320,"journal":{"name":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Frozen-Light Modes in 3-way Coupled Silicon Ridge Waveguides\",\"authors\":\"Raed Almhmadi, K. Sertel\",\"doi\":\"10.23919/USNC-URSI-NRSM.2019.8713100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frozen-light modes supported by the stationary inflection point (SIP) within the pass band of 3-way coupled periodic silicon ridge waveguides is demonstrated. Precise tuning of the coupling between forward and backward propagating modes lead to mode degeneracy with vanishing group velocity. The unit cell is tuned to obtain the SIP on the third branch in the dispersion diagram. Subsequently, we demonstrate a finite structure with 23 unit cells to support the frozen mode at the SIP frequency. For this example, the group velocity at the SIP is 385 times slower than speed of light in vacuum. Transmission resonances of the finite structure, as well as the field distribution within the device at the SIP frequency are studied and presented.\",\"PeriodicalId\":142320,\"journal\":{\"name\":\"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8713100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8713100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了三路耦合周期硅脊波导通带内的固定拐点支持的冻光模式。精确调整前向和后向传播模式之间的耦合导致模式退化,群速度消失。该单元胞被调优以获得色散图中第三个分支上的SIP。随后,我们展示了一个具有23个单元格的有限结构,以支持SIP频率下的冻结模式。在这个例子中,SIP的群速度比真空中的光速慢385倍。研究并给出了有限结构在SIP频率下的传输共振以及器件内的场分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frozen-Light Modes in 3-way Coupled Silicon Ridge Waveguides
Frozen-light modes supported by the stationary inflection point (SIP) within the pass band of 3-way coupled periodic silicon ridge waveguides is demonstrated. Precise tuning of the coupling between forward and backward propagating modes lead to mode degeneracy with vanishing group velocity. The unit cell is tuned to obtain the SIP on the third branch in the dispersion diagram. Subsequently, we demonstrate a finite structure with 23 unit cells to support the frozen mode at the SIP frequency. For this example, the group velocity at the SIP is 385 times slower than speed of light in vacuum. Transmission resonances of the finite structure, as well as the field distribution within the device at the SIP frequency are studied and presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信