利用Table-Hadamard变换并行生成高斯随机数

David B. Thomas
{"title":"利用Table-Hadamard变换并行生成高斯随机数","authors":"David B. Thomas","doi":"10.1109/FCCM.2013.53","DOIUrl":null,"url":null,"abstract":"Gaussian Random Number Generators (GRNGs) are an important component in parallel Monte-Carlo simulations using FPGAs, where tens or hundreds of high-quality Gaussian samples must be generated per cycle using very few logic resources. This paper describes the Table-Hadamard generator, which is a GRNG designed to generate multiple streams of random numbers in parallel. It uses discrete table distributions to generate pseudo-Gaussian base samples, then a parallel Hadamard transform to efficiently apply the central limit theorem. When generating 64 output samples the TableHadamard requires just 100 slices per generated sample, a quarter the resources of the next best technique, while providing higher statistical quality.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Parallel Generation of Gaussian Random Numbers Using the Table-Hadamard Transform\",\"authors\":\"David B. Thomas\",\"doi\":\"10.1109/FCCM.2013.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian Random Number Generators (GRNGs) are an important component in parallel Monte-Carlo simulations using FPGAs, where tens or hundreds of high-quality Gaussian samples must be generated per cycle using very few logic resources. This paper describes the Table-Hadamard generator, which is a GRNG designed to generate multiple streams of random numbers in parallel. It uses discrete table distributions to generate pseudo-Gaussian base samples, then a parallel Hadamard transform to efficiently apply the central limit theorem. When generating 64 output samples the TableHadamard requires just 100 slices per generated sample, a quarter the resources of the next best technique, while providing higher statistical quality.\",\"PeriodicalId\":269887,\"journal\":{\"name\":\"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2013.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

高斯随机数生成器(grng)是使用fpga进行并行蒙特卡罗模拟的重要组成部分,其中每个周期必须使用很少的逻辑资源生成数十或数百个高质量的高斯样本。本文介绍了Table-Hadamard生成器,它是一种用于并行生成多个随机数流的GRNG。首先利用离散表分布生成伪高斯基样本,然后利用并行Hadamard变换有效地应用中心极限定理。当生成64个输出样本时,TableHadamard每个生成的样本只需要100个切片,是次优技术资源的四分之一,同时提供更高的统计质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Generation of Gaussian Random Numbers Using the Table-Hadamard Transform
Gaussian Random Number Generators (GRNGs) are an important component in parallel Monte-Carlo simulations using FPGAs, where tens or hundreds of high-quality Gaussian samples must be generated per cycle using very few logic resources. This paper describes the Table-Hadamard generator, which is a GRNG designed to generate multiple streams of random numbers in parallel. It uses discrete table distributions to generate pseudo-Gaussian base samples, then a parallel Hadamard transform to efficiently apply the central limit theorem. When generating 64 output samples the TableHadamard requires just 100 slices per generated sample, a quarter the resources of the next best technique, while providing higher statistical quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信