{"title":"学习基于扩散的显著性检测的全范围亲和力","authors":"Keren Fu, I. Gu, Jie Yang","doi":"10.1109/ICASSP.2016.7472012","DOIUrl":null,"url":null,"abstract":"In this paper we address the issue of enhancing salient object detection through diffusion-based techniques. For reliably diffusing the energy from labeled seeds, we propose a novel graph-based diffusion scheme called affinity learning-based diffusion (ALD), which is based on learning full-range affinity between two arbitrary graph nodes. The method differs from the previous existing work where implicit diffusion was formulated as a ranking problem on a graph. In the proposed method, the affinity learning is achieved in a unified graph-based semi-supervised manner, whose outcome is leveraged for global propagation. By properly selecting an affinity learning model, the proposed ALD outperforms the ranking-based diffusion in terms of accurately detecting salient objects and enhancing the correct salient objects under a range of background scenarios. By utilizing the ALD, we propose an enhanced saliency detector that outperforms 7 recent state-of-the-art saliency models on 3 benchmark datasets.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning full-range affinity for diffusion-based saliency detection\",\"authors\":\"Keren Fu, I. Gu, Jie Yang\",\"doi\":\"10.1109/ICASSP.2016.7472012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the issue of enhancing salient object detection through diffusion-based techniques. For reliably diffusing the energy from labeled seeds, we propose a novel graph-based diffusion scheme called affinity learning-based diffusion (ALD), which is based on learning full-range affinity between two arbitrary graph nodes. The method differs from the previous existing work where implicit diffusion was formulated as a ranking problem on a graph. In the proposed method, the affinity learning is achieved in a unified graph-based semi-supervised manner, whose outcome is leveraged for global propagation. By properly selecting an affinity learning model, the proposed ALD outperforms the ranking-based diffusion in terms of accurately detecting salient objects and enhancing the correct salient objects under a range of background scenarios. By utilizing the ALD, we propose an enhanced saliency detector that outperforms 7 recent state-of-the-art saliency models on 3 benchmark datasets.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning full-range affinity for diffusion-based saliency detection
In this paper we address the issue of enhancing salient object detection through diffusion-based techniques. For reliably diffusing the energy from labeled seeds, we propose a novel graph-based diffusion scheme called affinity learning-based diffusion (ALD), which is based on learning full-range affinity between two arbitrary graph nodes. The method differs from the previous existing work where implicit diffusion was formulated as a ranking problem on a graph. In the proposed method, the affinity learning is achieved in a unified graph-based semi-supervised manner, whose outcome is leveraged for global propagation. By properly selecting an affinity learning model, the proposed ALD outperforms the ranking-based diffusion in terms of accurately detecting salient objects and enhancing the correct salient objects under a range of background scenarios. By utilizing the ALD, we propose an enhanced saliency detector that outperforms 7 recent state-of-the-art saliency models on 3 benchmark datasets.