短语引导的注意力网络文章推荐下一步点击和视图

Chia-Wei Chen, Sheng-Chuan Chou, Chang-You Tai, Lun-Wei Ku
{"title":"短语引导的注意力网络文章推荐下一步点击和视图","authors":"Chia-Wei Chen, Sheng-Chuan Chou, Chang-You Tai, Lun-Wei Ku","doi":"10.1145/3341161.3342869","DOIUrl":null,"url":null,"abstract":"As deep learning models are getting popular, upgrading the retrieval-based content recommendation system to the learning-based system is highly demanded. However, efficiency is a critical issue. For article recommendation, an effective neural network which generates a good representation of the article content could prove useful. Hence, we propose PGA-Recommender, a phrase-guided article recommendation model which mimics the process of human behavior - first browsing, then guided by key phrases, and finally aggregating the gleaned information. As this can be performed independently offline, it is thus compatible with current commercial retrieval-based (keyword-based) article recommender systems. A total of six months of real logs - from Apr 2017 to Sep 2017 - were used for experiments. Results show that PGA-Recommender outperforms different state-of-the-art schemes including session-, collaborative filter-, and content-based recommendation models. Moreover, it suggests a diverse mix of articles while maintaining superior performance in terms of both click and view predictions. The results of A/B tests show that simply using the backward version of PGA-Recommender yields 40% greater click-through rates as compared to the retrieval-based system when deployed to a language of which we have zero knowledge.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Phrase-Guided Attention Web Article Recommendation for Next Clicks and Views\",\"authors\":\"Chia-Wei Chen, Sheng-Chuan Chou, Chang-You Tai, Lun-Wei Ku\",\"doi\":\"10.1145/3341161.3342869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As deep learning models are getting popular, upgrading the retrieval-based content recommendation system to the learning-based system is highly demanded. However, efficiency is a critical issue. For article recommendation, an effective neural network which generates a good representation of the article content could prove useful. Hence, we propose PGA-Recommender, a phrase-guided article recommendation model which mimics the process of human behavior - first browsing, then guided by key phrases, and finally aggregating the gleaned information. As this can be performed independently offline, it is thus compatible with current commercial retrieval-based (keyword-based) article recommender systems. A total of six months of real logs - from Apr 2017 to Sep 2017 - were used for experiments. Results show that PGA-Recommender outperforms different state-of-the-art schemes including session-, collaborative filter-, and content-based recommendation models. Moreover, it suggests a diverse mix of articles while maintaining superior performance in terms of both click and view predictions. The results of A/B tests show that simply using the backward version of PGA-Recommender yields 40% greater click-through rates as compared to the retrieval-based system when deployed to a language of which we have zero knowledge.\",\"PeriodicalId\":403360,\"journal\":{\"name\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341161.3342869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3342869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着深度学习模型的普及,将基于检索的内容推荐系统升级为基于学习的内容推荐系统的需求越来越大。然而,效率是一个关键问题。对于文章推荐,一个有效的神经网络可以很好地表示文章内容。因此,我们提出了PGA-Recommender,这是一个短语引导的文章推荐模型,它模仿了人类的行为过程——首先浏览,然后由关键短语引导,最后汇总收集到的信息。由于这可以离线独立执行,因此它与当前基于检索(基于关键字)的商业文章推荐系统兼容。从2017年4月到2017年9月,共有6个月的真实日志被用于实验。结果表明,PGA-Recommender优于基于会话、协作过滤和内容的推荐模型。此外,它建议多样化的文章组合,同时在点击和观看预测方面保持优越的性能。A/B测试的结果表明,与基于检索的系统相比,使用落后版本的PGA-Recommender在使用我们一无所知的语言时,点击率要高出40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phrase-Guided Attention Web Article Recommendation for Next Clicks and Views
As deep learning models are getting popular, upgrading the retrieval-based content recommendation system to the learning-based system is highly demanded. However, efficiency is a critical issue. For article recommendation, an effective neural network which generates a good representation of the article content could prove useful. Hence, we propose PGA-Recommender, a phrase-guided article recommendation model which mimics the process of human behavior - first browsing, then guided by key phrases, and finally aggregating the gleaned information. As this can be performed independently offline, it is thus compatible with current commercial retrieval-based (keyword-based) article recommender systems. A total of six months of real logs - from Apr 2017 to Sep 2017 - were used for experiments. Results show that PGA-Recommender outperforms different state-of-the-art schemes including session-, collaborative filter-, and content-based recommendation models. Moreover, it suggests a diverse mix of articles while maintaining superior performance in terms of both click and view predictions. The results of A/B tests show that simply using the backward version of PGA-Recommender yields 40% greater click-through rates as compared to the retrieval-based system when deployed to a language of which we have zero knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信