增强视觉词袋预测睡意的各种聚类算法分析

V. Vijayan, P. P
{"title":"增强视觉词袋预测睡意的各种聚类算法分析","authors":"V. Vijayan, P. P","doi":"10.1109/aimv53313.2021.9670943","DOIUrl":null,"url":null,"abstract":"Bag-of-Visual-Words is a technique used to create image vocabularies which describes the best image features. The construction of visual vocabulary is done using various clustering techniques. This work concentrates on various clustering techniques that are implemented on Bag-of-Visual-Words technique so that to analyse the accuracy of vocabulary creation. The clustering techniques such as K-means, Mini-batch K-means, Mean-shift, DBSCAN and OP-TICS are implemented individually to record the efficiency of the model. Features from the input images are extracted using Scale Invariant Feature Transform(SIFT) matched with Fast Library for Approximate Nearest Neighbors(FLANN). Drowsy images are classified based on the occurrence of the visual words. The comparison result indicates that the OPTICS clustering algorithm works well with Bag-of-Visual-Words to output an accuracy rate of 79.01%.","PeriodicalId":135318,"journal":{"name":"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Various Clustering Algorithms to Enhance Bag-of-Visual-Words for Drowsiness Prediction\",\"authors\":\"V. Vijayan, P. P\",\"doi\":\"10.1109/aimv53313.2021.9670943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bag-of-Visual-Words is a technique used to create image vocabularies which describes the best image features. The construction of visual vocabulary is done using various clustering techniques. This work concentrates on various clustering techniques that are implemented on Bag-of-Visual-Words technique so that to analyse the accuracy of vocabulary creation. The clustering techniques such as K-means, Mini-batch K-means, Mean-shift, DBSCAN and OP-TICS are implemented individually to record the efficiency of the model. Features from the input images are extracted using Scale Invariant Feature Transform(SIFT) matched with Fast Library for Approximate Nearest Neighbors(FLANN). Drowsy images are classified based on the occurrence of the visual words. The comparison result indicates that the OPTICS clustering algorithm works well with Bag-of-Visual-Words to output an accuracy rate of 79.01%.\",\"PeriodicalId\":135318,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aimv53313.2021.9670943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aimv53313.2021.9670943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉词汇袋是一种用于创建描述图像最佳特征的图像词汇的技术。视觉词汇的构建使用了各种聚类技术。本文主要研究了在视觉词袋技术上实现的各种聚类技术,以分析词汇生成的准确性。分别采用K-means、Mini-batch K-means、Mean-shift、DBSCAN和OP-TICS等聚类技术来记录模型的效率。利用SIFT与FLANN算法相匹配的尺度不变特征变换对输入图像进行特征提取。昏昏欲睡的图像是根据视觉词的出现进行分类的。对比结果表明,OPTICS聚类算法与Bag-of-Visual-Words聚类效果良好,准确率达到79.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Various Clustering Algorithms to Enhance Bag-of-Visual-Words for Drowsiness Prediction
Bag-of-Visual-Words is a technique used to create image vocabularies which describes the best image features. The construction of visual vocabulary is done using various clustering techniques. This work concentrates on various clustering techniques that are implemented on Bag-of-Visual-Words technique so that to analyse the accuracy of vocabulary creation. The clustering techniques such as K-means, Mini-batch K-means, Mean-shift, DBSCAN and OP-TICS are implemented individually to record the efficiency of the model. Features from the input images are extracted using Scale Invariant Feature Transform(SIFT) matched with Fast Library for Approximate Nearest Neighbors(FLANN). Drowsy images are classified based on the occurrence of the visual words. The comparison result indicates that the OPTICS clustering algorithm works well with Bag-of-Visual-Words to output an accuracy rate of 79.01%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信