近红外图像跟踪下的人体姿态分类

Jiwan Han, A. Gaszczak, Ryszard Maciol, Stuart Barnes, T. Breckon
{"title":"近红外图像跟踪下的人体姿态分类","authors":"Jiwan Han, A. Gaszczak, Ryszard Maciol, Stuart Barnes, T. Breckon","doi":"10.1117/12.2028375","DOIUrl":null,"url":null,"abstract":"We address the challenge of human behaviour analysis within automated image understanding. Whilst prior work concentrates on this task within visible-band (EO) imagery, by contrast we target basic human pose classification in thermal-band (infrared, IR) imagery. By leveraging the key advantages of limb localization this imagery offers we target two distinct human pose classification problems of varying complexity: 1) identifying passive or active individuals within the scene and 2) the identification of individuals potentially carrying weapons. Both approaches use a discrete set of features capturing body pose characteristics from which a range of machine learning techniques are then employed for final classification. Significant success is shown on these challenging tasks over a wide range of environmental conditions within the wider context of automated human target tracking in thermal-band (IR) imagery.","PeriodicalId":344928,"journal":{"name":"Optics/Photonics in Security and Defence","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Human pose classification within the context of near-IR imagery tracking\",\"authors\":\"Jiwan Han, A. Gaszczak, Ryszard Maciol, Stuart Barnes, T. Breckon\",\"doi\":\"10.1117/12.2028375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the challenge of human behaviour analysis within automated image understanding. Whilst prior work concentrates on this task within visible-band (EO) imagery, by contrast we target basic human pose classification in thermal-band (infrared, IR) imagery. By leveraging the key advantages of limb localization this imagery offers we target two distinct human pose classification problems of varying complexity: 1) identifying passive or active individuals within the scene and 2) the identification of individuals potentially carrying weapons. Both approaches use a discrete set of features capturing body pose characteristics from which a range of machine learning techniques are then employed for final classification. Significant success is shown on these challenging tasks over a wide range of environmental conditions within the wider context of automated human target tracking in thermal-band (IR) imagery.\",\"PeriodicalId\":344928,\"journal\":{\"name\":\"Optics/Photonics in Security and Defence\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics/Photonics in Security and Defence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2028375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics/Photonics in Security and Defence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2028375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们解决了在自动图像理解中人类行为分析的挑战。虽然先前的工作集中在可见光波段(EO)图像中的这项任务,但相比之下,我们的目标是热波段(红外,IR)图像中的基本人体姿势分类。通过利用肢体定位的关键优势,该图像为我们提供了两个不同复杂程度的不同人体姿势分类问题:1)识别场景中被动或主动的个体;2)识别潜在携带武器的个体。这两种方法都使用一组离散的特征来捕获身体姿势特征,然后使用一系列机器学习技术进行最终分类。在热波段(IR)图像中自动人体目标跟踪的更广泛背景下,这些具有挑战性的任务在广泛的环境条件下取得了重大成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human pose classification within the context of near-IR imagery tracking
We address the challenge of human behaviour analysis within automated image understanding. Whilst prior work concentrates on this task within visible-band (EO) imagery, by contrast we target basic human pose classification in thermal-band (infrared, IR) imagery. By leveraging the key advantages of limb localization this imagery offers we target two distinct human pose classification problems of varying complexity: 1) identifying passive or active individuals within the scene and 2) the identification of individuals potentially carrying weapons. Both approaches use a discrete set of features capturing body pose characteristics from which a range of machine learning techniques are then employed for final classification. Significant success is shown on these challenging tasks over a wide range of environmental conditions within the wider context of automated human target tracking in thermal-band (IR) imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信