基于rdft滤波器的迭代DESA自适应频率估计

S. Bansal, A. Ghosh, C. Seelamantula, G. Gurrala, P. Ghosh
{"title":"基于rdft滤波器的迭代DESA自适应频率估计","authors":"S. Bansal, A. Ghosh, C. Seelamantula, G. Gurrala, P. Ghosh","doi":"10.1109/APPEEC.2017.8308990","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach for estimating fundamental frequency of grid signals. The approach is based on a discrete-time energy separation algorithm (DESA) combined with an adaptive bandpass filter (BPF). The BPF is built using a discrete Fourier transform (DFT) and inverse DFT both used recursively. The technique is computationally efficient and robust to the harmonics and noise in the signal. The method's performance is validated by comparing the results with some existing algorithms.","PeriodicalId":247669,"journal":{"name":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive frequency estimation using iterative DESA with RDFT-based filter\",\"authors\":\"S. Bansal, A. Ghosh, C. Seelamantula, G. Gurrala, P. Ghosh\",\"doi\":\"10.1109/APPEEC.2017.8308990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach for estimating fundamental frequency of grid signals. The approach is based on a discrete-time energy separation algorithm (DESA) combined with an adaptive bandpass filter (BPF). The BPF is built using a discrete Fourier transform (DFT) and inverse DFT both used recursively. The technique is computationally efficient and robust to the harmonics and noise in the signal. The method's performance is validated by comparing the results with some existing algorithms.\",\"PeriodicalId\":247669,\"journal\":{\"name\":\"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2017.8308990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2017.8308990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种估计网格信号基频的新方法。该方法基于离散时间能量分离算法(DESA)和自适应带通滤波器(BPF)相结合。用离散傅立叶变换(DFT)和逆傅立叶变换(DFT)递归构建BPF。该方法计算效率高,对信号中的谐波和噪声具有较强的鲁棒性。通过与现有算法的比较,验证了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive frequency estimation using iterative DESA with RDFT-based filter
This paper proposes a new approach for estimating fundamental frequency of grid signals. The approach is based on a discrete-time energy separation algorithm (DESA) combined with an adaptive bandpass filter (BPF). The BPF is built using a discrete Fourier transform (DFT) and inverse DFT both used recursively. The technique is computationally efficient and robust to the harmonics and noise in the signal. The method's performance is validated by comparing the results with some existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信