使用最大边际矩阵分解集合的协同预测

D. DeCoste
{"title":"使用最大边际矩阵分解集合的协同预测","authors":"D. DeCoste","doi":"10.1145/1143844.1143876","DOIUrl":null,"url":null,"abstract":"Fast gradient-based methods for Maximum Margin Matrix Factorization (MMMF) were recently shown to have great promise (Rennie & Srebro, 2005), including significantly outperforming the previous state-of-the-art methods on some standard collaborative prediction benchmarks (including MovieLens). In this paper, we investigate ways to further improve the performance of MMMF, by casting it within an ensemble approach. We explore and evaluate a variety of alternative ways to define such ensembles. We show that our resulting ensembles can perform significantly better than a single MMMF model, along multiple evaluation metrics. In fact, we find that ensembles of partially trained MMMF models can sometimes even give better predictions in total training time comparable to a single MMMF model.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"Collaborative prediction using ensembles of Maximum Margin Matrix Factorizations\",\"authors\":\"D. DeCoste\",\"doi\":\"10.1145/1143844.1143876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast gradient-based methods for Maximum Margin Matrix Factorization (MMMF) were recently shown to have great promise (Rennie & Srebro, 2005), including significantly outperforming the previous state-of-the-art methods on some standard collaborative prediction benchmarks (including MovieLens). In this paper, we investigate ways to further improve the performance of MMMF, by casting it within an ensemble approach. We explore and evaluate a variety of alternative ways to define such ensembles. We show that our resulting ensembles can perform significantly better than a single MMMF model, along multiple evaluation metrics. In fact, we find that ensembles of partially trained MMMF models can sometimes even give better predictions in total training time comparable to a single MMMF model.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

基于快速梯度的最大边际矩阵分解(MMMF)方法最近被证明具有很大的前景(Rennie & Srebro, 2005),包括在一些标准协作预测基准(包括MovieLens)上显着优于以前最先进的方法。在本文中,我们研究了通过集成方法来进一步提高MMMF性能的方法。我们探索和评估了各种不同的方法来定义这样的集成。我们表明,我们的结果集成在多个评估指标上的表现明显优于单个MMMF模型。事实上,我们发现部分训练的MMMF模型的集合有时甚至可以在总训练时间内给出比单个MMMF模型更好的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative prediction using ensembles of Maximum Margin Matrix Factorizations
Fast gradient-based methods for Maximum Margin Matrix Factorization (MMMF) were recently shown to have great promise (Rennie & Srebro, 2005), including significantly outperforming the previous state-of-the-art methods on some standard collaborative prediction benchmarks (including MovieLens). In this paper, we investigate ways to further improve the performance of MMMF, by casting it within an ensemble approach. We explore and evaluate a variety of alternative ways to define such ensembles. We show that our resulting ensembles can perform significantly better than a single MMMF model, along multiple evaluation metrics. In fact, we find that ensembles of partially trained MMMF models can sometimes even give better predictions in total training time comparable to a single MMMF model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信