{"title":"监控场景下行人属性识别的多属性学习","authors":"Dangwei Li, Xiaotang Chen, Kaiqi Huang","doi":"10.1109/ACPR.2015.7486476","DOIUrl":null,"url":null,"abstract":"In real video surveillance scenarios, visual pedestrian attributes, such as gender, backpack, clothes types, are very important for pedestrian retrieval and person reidentification. Existing methods for attributes recognition have two drawbacks: (a) handcrafted features (e.g. color histograms, local binary patterns) cannot cope well with the difficulty of real video surveillance scenarios; (b) the relationship among pedestrian attributes is ignored. To address the two drawbacks, we propose two deep learning based models to recognize pedestrian attributes. On the one hand, each attribute is treated as an independent component and the deep learning based single attribute recognition model (DeepSAR) is proposed to recognize each attribute one by one. On the other hand, to exploit the relationship among attributes, the deep learning framework which recognizes multiple attributes jointly (DeepMAR) is proposed. In the DeepMAR, one attribute can contribute to the representation of other attributes. For example, the gender of woman can contribute to the representation oflong hair and wearing skirt. Experiments on recent popular pedestrian attribute datasets illustrate that our proposed models achieve the state-of-the-art results.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"220","resultStr":"{\"title\":\"Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios\",\"authors\":\"Dangwei Li, Xiaotang Chen, Kaiqi Huang\",\"doi\":\"10.1109/ACPR.2015.7486476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real video surveillance scenarios, visual pedestrian attributes, such as gender, backpack, clothes types, are very important for pedestrian retrieval and person reidentification. Existing methods for attributes recognition have two drawbacks: (a) handcrafted features (e.g. color histograms, local binary patterns) cannot cope well with the difficulty of real video surveillance scenarios; (b) the relationship among pedestrian attributes is ignored. To address the two drawbacks, we propose two deep learning based models to recognize pedestrian attributes. On the one hand, each attribute is treated as an independent component and the deep learning based single attribute recognition model (DeepSAR) is proposed to recognize each attribute one by one. On the other hand, to exploit the relationship among attributes, the deep learning framework which recognizes multiple attributes jointly (DeepMAR) is proposed. In the DeepMAR, one attribute can contribute to the representation of other attributes. For example, the gender of woman can contribute to the representation oflong hair and wearing skirt. Experiments on recent popular pedestrian attribute datasets illustrate that our proposed models achieve the state-of-the-art results.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"220\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios
In real video surveillance scenarios, visual pedestrian attributes, such as gender, backpack, clothes types, are very important for pedestrian retrieval and person reidentification. Existing methods for attributes recognition have two drawbacks: (a) handcrafted features (e.g. color histograms, local binary patterns) cannot cope well with the difficulty of real video surveillance scenarios; (b) the relationship among pedestrian attributes is ignored. To address the two drawbacks, we propose two deep learning based models to recognize pedestrian attributes. On the one hand, each attribute is treated as an independent component and the deep learning based single attribute recognition model (DeepSAR) is proposed to recognize each attribute one by one. On the other hand, to exploit the relationship among attributes, the deep learning framework which recognizes multiple attributes jointly (DeepMAR) is proposed. In the DeepMAR, one attribute can contribute to the representation of other attributes. For example, the gender of woman can contribute to the representation oflong hair and wearing skirt. Experiments on recent popular pedestrian attribute datasets illustrate that our proposed models achieve the state-of-the-art results.