监控场景下行人属性识别的多属性学习

Dangwei Li, Xiaotang Chen, Kaiqi Huang
{"title":"监控场景下行人属性识别的多属性学习","authors":"Dangwei Li, Xiaotang Chen, Kaiqi Huang","doi":"10.1109/ACPR.2015.7486476","DOIUrl":null,"url":null,"abstract":"In real video surveillance scenarios, visual pedestrian attributes, such as gender, backpack, clothes types, are very important for pedestrian retrieval and person reidentification. Existing methods for attributes recognition have two drawbacks: (a) handcrafted features (e.g. color histograms, local binary patterns) cannot cope well with the difficulty of real video surveillance scenarios; (b) the relationship among pedestrian attributes is ignored. To address the two drawbacks, we propose two deep learning based models to recognize pedestrian attributes. On the one hand, each attribute is treated as an independent component and the deep learning based single attribute recognition model (DeepSAR) is proposed to recognize each attribute one by one. On the other hand, to exploit the relationship among attributes, the deep learning framework which recognizes multiple attributes jointly (DeepMAR) is proposed. In the DeepMAR, one attribute can contribute to the representation of other attributes. For example, the gender of woman can contribute to the representation oflong hair and wearing skirt. Experiments on recent popular pedestrian attribute datasets illustrate that our proposed models achieve the state-of-the-art results.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"220","resultStr":"{\"title\":\"Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios\",\"authors\":\"Dangwei Li, Xiaotang Chen, Kaiqi Huang\",\"doi\":\"10.1109/ACPR.2015.7486476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real video surveillance scenarios, visual pedestrian attributes, such as gender, backpack, clothes types, are very important for pedestrian retrieval and person reidentification. Existing methods for attributes recognition have two drawbacks: (a) handcrafted features (e.g. color histograms, local binary patterns) cannot cope well with the difficulty of real video surveillance scenarios; (b) the relationship among pedestrian attributes is ignored. To address the two drawbacks, we propose two deep learning based models to recognize pedestrian attributes. On the one hand, each attribute is treated as an independent component and the deep learning based single attribute recognition model (DeepSAR) is proposed to recognize each attribute one by one. On the other hand, to exploit the relationship among attributes, the deep learning framework which recognizes multiple attributes jointly (DeepMAR) is proposed. In the DeepMAR, one attribute can contribute to the representation of other attributes. For example, the gender of woman can contribute to the representation oflong hair and wearing skirt. Experiments on recent popular pedestrian attribute datasets illustrate that our proposed models achieve the state-of-the-art results.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"220\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 220

摘要

在真实视频监控场景中,行人的视觉属性,如性别、背包、服装类型等,对于行人检索和人的再识别是非常重要的。现有的属性识别方法存在两个缺点:(a)手工制作的特征(如颜色直方图、局部二值模式)不能很好地应对真实视频监控场景的困难;(b)忽略行人属性之间的关系。为了解决这两个缺点,我们提出了两个基于深度学习的模型来识别行人属性。一方面,将每个属性视为一个独立的组成部分,提出了基于深度学习的单属性识别模型(DeepSAR),对每个属性逐一进行识别;另一方面,为了挖掘属性之间的关系,提出了多属性联合识别的深度学习框架(DeepMAR)。在DeepMAR中,一个属性可以为其他属性的表示做出贡献。例如,女性的性别可以促成长发和穿裙子的表现。在最近流行的行人属性数据集上的实验表明,我们提出的模型达到了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios
In real video surveillance scenarios, visual pedestrian attributes, such as gender, backpack, clothes types, are very important for pedestrian retrieval and person reidentification. Existing methods for attributes recognition have two drawbacks: (a) handcrafted features (e.g. color histograms, local binary patterns) cannot cope well with the difficulty of real video surveillance scenarios; (b) the relationship among pedestrian attributes is ignored. To address the two drawbacks, we propose two deep learning based models to recognize pedestrian attributes. On the one hand, each attribute is treated as an independent component and the deep learning based single attribute recognition model (DeepSAR) is proposed to recognize each attribute one by one. On the other hand, to exploit the relationship among attributes, the deep learning framework which recognizes multiple attributes jointly (DeepMAR) is proposed. In the DeepMAR, one attribute can contribute to the representation of other attributes. For example, the gender of woman can contribute to the representation oflong hair and wearing skirt. Experiments on recent popular pedestrian attribute datasets illustrate that our proposed models achieve the state-of-the-art results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信