堆肥中碳氮矿化动态:用多元非线性回归预测可溶有机碳

E. Conde-Barajas, Héctor Iván Bedolla-Rivera, M. Negrete-Rodríguez, Sandra Lizeth Galván-Díaz, M. Samaniego-Hernández, F. P. Gámez-Vázquez
{"title":"堆肥中碳氮矿化动态:用多元非线性回归预测可溶有机碳","authors":"E. Conde-Barajas, Héctor Iván Bedolla-Rivera, M. Negrete-Rodríguez, Sandra Lizeth Galván-Díaz, M. Samaniego-Hernández, F. P. Gámez-Vázquez","doi":"10.56845/rebs.v3i2.55","DOIUrl":null,"url":null,"abstract":"Urban biosolids present a considerable concentration of nutrients, which are currently wasted and deposited in landfills causing environmental contamination. In the present study, a dimensionality reduction technique is used to select indicators with a higher relationship in their variability. Subsequently, a multivariate nonlinear regression process is used to establish an equation that allows predicting the behavior of the soluble organic carbon indicator. The indicators with the greatest relationship with the variability of the data analyzed were N-NO3-, N-NH4+/N-NO3- and IES. The resulting model presented a correlation of 30% with the soluble organic carbon indicator in the composting systems.","PeriodicalId":194964,"journal":{"name":"Renewable Energy, Biomass & Sustainability","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C and N Mineralization Dynamics in Composts: Prediction of Soluble Organic Carbon by Multiple Nonlinear Regression\",\"authors\":\"E. Conde-Barajas, Héctor Iván Bedolla-Rivera, M. Negrete-Rodríguez, Sandra Lizeth Galván-Díaz, M. Samaniego-Hernández, F. P. Gámez-Vázquez\",\"doi\":\"10.56845/rebs.v3i2.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban biosolids present a considerable concentration of nutrients, which are currently wasted and deposited in landfills causing environmental contamination. In the present study, a dimensionality reduction technique is used to select indicators with a higher relationship in their variability. Subsequently, a multivariate nonlinear regression process is used to establish an equation that allows predicting the behavior of the soluble organic carbon indicator. The indicators with the greatest relationship with the variability of the data analyzed were N-NO3-, N-NH4+/N-NO3- and IES. The resulting model presented a correlation of 30% with the soluble organic carbon indicator in the composting systems.\",\"PeriodicalId\":194964,\"journal\":{\"name\":\"Renewable Energy, Biomass & Sustainability\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy, Biomass & Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56845/rebs.v3i2.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy, Biomass & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56845/rebs.v3i2.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

城市生物固体含有大量的营养物质,目前这些营养物质被浪费并堆积在垃圾填埋场,造成环境污染。在本研究中,采用降维技术来选择具有较高变异性关系的指标。随后,使用多元非线性回归过程建立了一个方程,可以预测可溶性有机碳指示剂的行为。与数据变异性关系最大的指标为N-NO3-、N-NH4+/N-NO3-和IES。结果表明,该模型与堆肥系统中可溶性有机碳指标的相关性为30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
C and N Mineralization Dynamics in Composts: Prediction of Soluble Organic Carbon by Multiple Nonlinear Regression
Urban biosolids present a considerable concentration of nutrients, which are currently wasted and deposited in landfills causing environmental contamination. In the present study, a dimensionality reduction technique is used to select indicators with a higher relationship in their variability. Subsequently, a multivariate nonlinear regression process is used to establish an equation that allows predicting the behavior of the soluble organic carbon indicator. The indicators with the greatest relationship with the variability of the data analyzed were N-NO3-, N-NH4+/N-NO3- and IES. The resulting model presented a correlation of 30% with the soluble organic carbon indicator in the composting systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信