{"title":"星图中抛物型分数Sturm-Liouville方程的最优控制问题","authors":"G. Leugering, G. Mophou, M. Moutamal, M. Warma","doi":"10.3934/mcrf.2022015","DOIUrl":null,"url":null,"abstract":"In the present paper we deal with parabolic fractional initial-boundary value problems of Sturm–Liouville type in an interval and in a general star graph. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. We prove the existence and uniqueness of solutions to a quadratic boundary optimal control problem and provide a characterization of the optimal contol via the Euler–Lagrange first order optimality conditions. We then investigate the analogous problems for a fractional Sturm–Liouville problem in a general star graph with mixed Dirichlet and Neumann boundary controls. The existence and uniqueness of minimizers, and the characterization of the first order optimality conditions are obtained in a general star graph by using the method of Lagrange multipliers.","PeriodicalId":418020,"journal":{"name":"Mathematical Control & Related Fields","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph\",\"authors\":\"G. Leugering, G. Mophou, M. Moutamal, M. Warma\",\"doi\":\"10.3934/mcrf.2022015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we deal with parabolic fractional initial-boundary value problems of Sturm–Liouville type in an interval and in a general star graph. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. We prove the existence and uniqueness of solutions to a quadratic boundary optimal control problem and provide a characterization of the optimal contol via the Euler–Lagrange first order optimality conditions. We then investigate the analogous problems for a fractional Sturm–Liouville problem in a general star graph with mixed Dirichlet and Neumann boundary controls. The existence and uniqueness of minimizers, and the characterization of the first order optimality conditions are obtained in a general star graph by using the method of Lagrange multipliers.\",\"PeriodicalId\":418020,\"journal\":{\"name\":\"Mathematical Control & Related Fields\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control & Related Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control & Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mcrf.2022015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph
In the present paper we deal with parabolic fractional initial-boundary value problems of Sturm–Liouville type in an interval and in a general star graph. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. We prove the existence and uniqueness of solutions to a quadratic boundary optimal control problem and provide a characterization of the optimal contol via the Euler–Lagrange first order optimality conditions. We then investigate the analogous problems for a fractional Sturm–Liouville problem in a general star graph with mixed Dirichlet and Neumann boundary controls. The existence and uniqueness of minimizers, and the characterization of the first order optimality conditions are obtained in a general star graph by using the method of Lagrange multipliers.