星图中抛物型分数Sturm-Liouville方程的最优控制问题

G. Leugering, G. Mophou, M. Moutamal, M. Warma
{"title":"星图中抛物型分数Sturm-Liouville方程的最优控制问题","authors":"G. Leugering, G. Mophou, M. Moutamal, M. Warma","doi":"10.3934/mcrf.2022015","DOIUrl":null,"url":null,"abstract":"In the present paper we deal with parabolic fractional initial-boundary value problems of Sturm–Liouville type in an interval and in a general star graph. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. We prove the existence and uniqueness of solutions to a quadratic boundary optimal control problem and provide a characterization of the optimal contol via the Euler–Lagrange first order optimality conditions. We then investigate the analogous problems for a fractional Sturm–Liouville problem in a general star graph with mixed Dirichlet and Neumann boundary controls. The existence and uniqueness of minimizers, and the characterization of the first order optimality conditions are obtained in a general star graph by using the method of Lagrange multipliers.","PeriodicalId":418020,"journal":{"name":"Mathematical Control & Related Fields","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph\",\"authors\":\"G. Leugering, G. Mophou, M. Moutamal, M. Warma\",\"doi\":\"10.3934/mcrf.2022015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we deal with parabolic fractional initial-boundary value problems of Sturm–Liouville type in an interval and in a general star graph. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. We prove the existence and uniqueness of solutions to a quadratic boundary optimal control problem and provide a characterization of the optimal contol via the Euler–Lagrange first order optimality conditions. We then investigate the analogous problems for a fractional Sturm–Liouville problem in a general star graph with mixed Dirichlet and Neumann boundary controls. The existence and uniqueness of minimizers, and the characterization of the first order optimality conditions are obtained in a general star graph by using the method of Lagrange multipliers.\",\"PeriodicalId\":418020,\"journal\":{\"name\":\"Mathematical Control & Related Fields\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control & Related Fields\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control & Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mcrf.2022015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了区间和一般星图上Sturm-Liouville型抛物分数型初边值问题。首先给出了弱解和甚弱解的存在性、唯一性和正则性的几个结果。我们证明了一类二次型边界最优控制问题解的存在唯一性,并利用欧拉-拉格朗日一阶最优性条件给出了最优控制的表征。然后,我们研究了一类具有Dirichlet和Neumann混合边界控制的一般星图的分数型Sturm-Liouville问题的类似问题。利用拉格朗日乘子法,得到了一般星图中最小值的存在唯一性,以及一阶最优性条件的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph
In the present paper we deal with parabolic fractional initial-boundary value problems of Sturm–Liouville type in an interval and in a general star graph. We first give several existence, uniqueness and regularity results of weak and very-weak solutions. We prove the existence and uniqueness of solutions to a quadratic boundary optimal control problem and provide a characterization of the optimal contol via the Euler–Lagrange first order optimality conditions. We then investigate the analogous problems for a fractional Sturm–Liouville problem in a general star graph with mixed Dirichlet and Neumann boundary controls. The existence and uniqueness of minimizers, and the characterization of the first order optimality conditions are obtained in a general star graph by using the method of Lagrange multipliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信