使用扩展Baum-Welch变换的隐马尔可夫模型框架中的广义语音类识别

Tara N. Sainath, D. Kanevsky, B. Ramabhadran
{"title":"使用扩展Baum-Welch变换的隐马尔可夫模型框架中的广义语音类识别","authors":"Tara N. Sainath, D. Kanevsky, B. Ramabhadran","doi":"10.1109/ASRU.2007.4430129","DOIUrl":null,"url":null,"abstract":"In many pattern recognition tasks, given some input data and a model, a probabilistic likelihood score is often computed to measure how well the model describes the data. Extended Baum-Welch (EBW) transformations are most commonly used as a discriminative technique for estimating parameters of Gaussian mixtures, though recently they have been used to derive a gradient steepness measurement to evaluate the quality of the model to match the distribution of the data. In this paper, we explore applying the EBW gradient steepness metric in the context of Hidden Markov Models (HMMs) for recognition of broad phonetic classes and present a detailed analysis and results on the use of this gradient metric on the TIMIT corpus. We find that our gradient metric is able to outperform the baseline likelihood method, and offers improvements in noisy conditions.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Broad phonetic class recognition in a Hidden Markov model framework using extended Baum-Welch transformations\",\"authors\":\"Tara N. Sainath, D. Kanevsky, B. Ramabhadran\",\"doi\":\"10.1109/ASRU.2007.4430129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many pattern recognition tasks, given some input data and a model, a probabilistic likelihood score is often computed to measure how well the model describes the data. Extended Baum-Welch (EBW) transformations are most commonly used as a discriminative technique for estimating parameters of Gaussian mixtures, though recently they have been used to derive a gradient steepness measurement to evaluate the quality of the model to match the distribution of the data. In this paper, we explore applying the EBW gradient steepness metric in the context of Hidden Markov Models (HMMs) for recognition of broad phonetic classes and present a detailed analysis and results on the use of this gradient metric on the TIMIT corpus. We find that our gradient metric is able to outperform the baseline likelihood method, and offers improvements in noisy conditions.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在许多模式识别任务中,给定一些输入数据和一个模型,通常计算一个概率似然评分来衡量模型描述数据的程度。扩展Baum-Welch (EBW)变换是最常用的判别技术,用于估计高斯混合物的参数,尽管最近它们已被用于导出梯度陡峭度测量,以评估模型的质量,以匹配数据的分布。在本文中,我们探索了在隐马尔可夫模型(hmm)的背景下应用EBW梯度陡峭度度量来识别广泛的语音类别,并给出了在TIMIT语料库上使用该梯度度量的详细分析和结果。我们发现我们的梯度度量能够优于基线似然方法,并且在嘈杂条件下提供改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broad phonetic class recognition in a Hidden Markov model framework using extended Baum-Welch transformations
In many pattern recognition tasks, given some input data and a model, a probabilistic likelihood score is often computed to measure how well the model describes the data. Extended Baum-Welch (EBW) transformations are most commonly used as a discriminative technique for estimating parameters of Gaussian mixtures, though recently they have been used to derive a gradient steepness measurement to evaluate the quality of the model to match the distribution of the data. In this paper, we explore applying the EBW gradient steepness metric in the context of Hidden Markov Models (HMMs) for recognition of broad phonetic classes and present a detailed analysis and results on the use of this gradient metric on the TIMIT corpus. We find that our gradient metric is able to outperform the baseline likelihood method, and offers improvements in noisy conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信