一种混沌伪逆多项式感知器网络用于短期太阳能发电预测

Shaktinarayana Mishra, Smrutirekha Pattnaik, P. Satapathy, L. Tripathy, P. Dash
{"title":"一种混沌伪逆多项式感知器网络用于短期太阳能发电预测","authors":"Shaktinarayana Mishra, Smrutirekha Pattnaik, P. Satapathy, L. Tripathy, P. Dash","doi":"10.1109/ODICON50556.2021.9428998","DOIUrl":null,"url":null,"abstract":"High precision prediction of solar power generation is very much necessary with the continuous increase of grid connected solar electricity. The accurate power prediction is extremely important for the optimal scheduling and safe operation of the grid. In this paper, an Chaotic Water Cycle Algorithm (CWCA) based Pseudo Inverse Polynomial Perceptron Network (PIPPN) is proposed to accurately predict the solar power for different weather condition and for different time horizon. The random input layer weights of the PIPPN are optimized using the CWCA. Here, a sinusoidal chaotic map is applied to diversify the populations to improvise the performance of the basic PIPPN. The chaos in proposed Chaotic PIPPN (CPIPPN) helps to predict the future solar power very efficiently. The performance of the proposed CPIPPN model is verified through various performance measures. The dominance and diversity of the proposed CPIPPN method is verified against the basic Polynomial Perceptron Network (PPN) and PIPPN for 5 minute and 1 hour ahead time horizon.","PeriodicalId":197132,"journal":{"name":"2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Chaotic Pseduo Inverse Polynomial Perceptron Network for Short Term Solar Power Prediction\",\"authors\":\"Shaktinarayana Mishra, Smrutirekha Pattnaik, P. Satapathy, L. Tripathy, P. Dash\",\"doi\":\"10.1109/ODICON50556.2021.9428998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High precision prediction of solar power generation is very much necessary with the continuous increase of grid connected solar electricity. The accurate power prediction is extremely important for the optimal scheduling and safe operation of the grid. In this paper, an Chaotic Water Cycle Algorithm (CWCA) based Pseudo Inverse Polynomial Perceptron Network (PIPPN) is proposed to accurately predict the solar power for different weather condition and for different time horizon. The random input layer weights of the PIPPN are optimized using the CWCA. Here, a sinusoidal chaotic map is applied to diversify the populations to improvise the performance of the basic PIPPN. The chaos in proposed Chaotic PIPPN (CPIPPN) helps to predict the future solar power very efficiently. The performance of the proposed CPIPPN model is verified through various performance measures. The dominance and diversity of the proposed CPIPPN method is verified against the basic Polynomial Perceptron Network (PPN) and PIPPN for 5 minute and 1 hour ahead time horizon.\",\"PeriodicalId\":197132,\"journal\":{\"name\":\"2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ODICON50556.2021.9428998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ODICON50556.2021.9428998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着太阳能并网电量的不断增加,对太阳能发电进行高精度预测是十分必要的。准确的电力预测对电网的优化调度和安全运行至关重要。本文提出了一种基于混沌水循环算法(CWCA)的伪逆多项式感知器网络(PIPPN),用于准确预测不同天气条件和时间范围下的太阳能发电。利用CWCA对PIPPN的随机输入层权值进行了优化。在这里,一个正弦混沌映射应用于多样化的人口,以即兴的基本PIPPN的性能。混沌PIPPN (CPIPPN)的混沌特性有助于有效地预测未来的太阳能发电。通过各种性能度量验证了所提出的CPIPPN模型的性能。在5分钟和1小时的时间范围内,通过基本多项式感知器网络(PPN)和PIPPN验证了所提出的CPIPPN方法的优势性和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Chaotic Pseduo Inverse Polynomial Perceptron Network for Short Term Solar Power Prediction
High precision prediction of solar power generation is very much necessary with the continuous increase of grid connected solar electricity. The accurate power prediction is extremely important for the optimal scheduling and safe operation of the grid. In this paper, an Chaotic Water Cycle Algorithm (CWCA) based Pseudo Inverse Polynomial Perceptron Network (PIPPN) is proposed to accurately predict the solar power for different weather condition and for different time horizon. The random input layer weights of the PIPPN are optimized using the CWCA. Here, a sinusoidal chaotic map is applied to diversify the populations to improvise the performance of the basic PIPPN. The chaos in proposed Chaotic PIPPN (CPIPPN) helps to predict the future solar power very efficiently. The performance of the proposed CPIPPN model is verified through various performance measures. The dominance and diversity of the proposed CPIPPN method is verified against the basic Polynomial Perceptron Network (PPN) and PIPPN for 5 minute and 1 hour ahead time horizon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信