调制信号下多标准功率放大器非线性特性的实验灵敏度分析

M. B. Ayed, S. Boumaiza
{"title":"调制信号下多标准功率放大器非线性特性的实验灵敏度分析","authors":"M. B. Ayed, S. Boumaiza","doi":"10.1109/ARFTG.2010.5496318","DOIUrl":null,"url":null,"abstract":"This paper proposes an experimental analysis focusing on the sensitivity of three behavioral models, Memory Polynomial (MP), Augmented Hammerstein (AH) and the two hidden layers artificial neural networks (2HLANN) to the characteristics of the input signal driving the power amplifier (PA) to be linearized. The analysis is carried out by changing separately each signal characteristic, respectively the peak to average power ratio (PAPR), the Probability density function (PDF), and the modulation bandwidth and assess the sensitivity of the DPD to that change. When used to linearise a 250 Watt peak-envelop-power Doherty PA, the considered models showed relatively small sensitivity to the variation of these signal characteristics. Yet, the 2HLANN was found to be the most robust model with excellent linearization capabilities.","PeriodicalId":221794,"journal":{"name":"75th ARFTG Microwave Measurement Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental sensitivity analysis of multi-standard power amplifiers nonlinear characterization under modulated signals\",\"authors\":\"M. B. Ayed, S. Boumaiza\",\"doi\":\"10.1109/ARFTG.2010.5496318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an experimental analysis focusing on the sensitivity of three behavioral models, Memory Polynomial (MP), Augmented Hammerstein (AH) and the two hidden layers artificial neural networks (2HLANN) to the characteristics of the input signal driving the power amplifier (PA) to be linearized. The analysis is carried out by changing separately each signal characteristic, respectively the peak to average power ratio (PAPR), the Probability density function (PDF), and the modulation bandwidth and assess the sensitivity of the DPD to that change. When used to linearise a 250 Watt peak-envelop-power Doherty PA, the considered models showed relatively small sensitivity to the variation of these signal characteristics. Yet, the 2HLANN was found to be the most robust model with excellent linearization capabilities.\",\"PeriodicalId\":221794,\"journal\":{\"name\":\"75th ARFTG Microwave Measurement Conference\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"75th ARFTG Microwave Measurement Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARFTG.2010.5496318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"75th ARFTG Microwave Measurement Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG.2010.5496318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文针对记忆多项式(Memory Polynomial, MP)、增强Hammerstein (Augmented Hammerstein, AH)和两隐层人工神经网络(hidden layer artificial neural networks, 2HLANN)三种行为模型对驱动功率放大器(PA)线性化的输入信号的敏感性进行了实验分析。通过分别改变每个信号的特性,分别改变峰均功率比(PAPR)、概率密度函数(PDF)和调制带宽进行分析,并评估DPD对这些变化的敏感性。当用于线性化250瓦的峰值包络功率Doherty PA时,所考虑的模型对这些信号特性的变化表现出相对较小的敏感性。然而,2HLANN被发现是最鲁棒的模型,具有出色的线性化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental sensitivity analysis of multi-standard power amplifiers nonlinear characterization under modulated signals
This paper proposes an experimental analysis focusing on the sensitivity of three behavioral models, Memory Polynomial (MP), Augmented Hammerstein (AH) and the two hidden layers artificial neural networks (2HLANN) to the characteristics of the input signal driving the power amplifier (PA) to be linearized. The analysis is carried out by changing separately each signal characteristic, respectively the peak to average power ratio (PAPR), the Probability density function (PDF), and the modulation bandwidth and assess the sensitivity of the DPD to that change. When used to linearise a 250 Watt peak-envelop-power Doherty PA, the considered models showed relatively small sensitivity to the variation of these signal characteristics. Yet, the 2HLANN was found to be the most robust model with excellent linearization capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信