Felix Pletzer, R. Tusch, L. Böszörményi, B. Rinner
{"title":"智能摄像机的鲁棒交通状态估计","authors":"Felix Pletzer, R. Tusch, L. Böszörményi, B. Rinner","doi":"10.1109/AVSS.2012.63","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for video-based traffic state detection on motorways performed on smart cameras. Camera calibration parameters are obtained from the known length of lane markings. Mean traffic speed is estimated from Kanade-Lucas-Tomasi (KLT) optical flow method using a robust outlier detection. Traffic density is estimated using a robust statistical counting method. Our method has been implemented on an embedded smart camera and evaluated under different road and illumination conditions. It achieves a detection rate of more than 95% for stationary traffic.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Robust Traffic State Estimation on Smart Cameras\",\"authors\":\"Felix Pletzer, R. Tusch, L. Böszörményi, B. Rinner\",\"doi\":\"10.1109/AVSS.2012.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for video-based traffic state detection on motorways performed on smart cameras. Camera calibration parameters are obtained from the known length of lane markings. Mean traffic speed is estimated from Kanade-Lucas-Tomasi (KLT) optical flow method using a robust outlier detection. Traffic density is estimated using a robust statistical counting method. Our method has been implemented on an embedded smart camera and evaluated under different road and illumination conditions. It achieves a detection rate of more than 95% for stationary traffic.\",\"PeriodicalId\":275325,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2012.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
摘要
提出了一种基于智能摄像头的高速公路视频交通状态检测新方法。摄像机标定参数由已知的车道标线长度获得。采用鲁棒离群值检测的kade - lucas - tomasi (KLT)光流法估计了平均交通速度。采用稳健统计计数方法估计交通密度。我们的方法已经在嵌入式智能摄像头上实现,并在不同的道路和照明条件下进行了评估。对静止交通的检测率达到95%以上。
This paper presents a novel method for video-based traffic state detection on motorways performed on smart cameras. Camera calibration parameters are obtained from the known length of lane markings. Mean traffic speed is estimated from Kanade-Lucas-Tomasi (KLT) optical flow method using a robust outlier detection. Traffic density is estimated using a robust statistical counting method. Our method has been implemented on an embedded smart camera and evaluated under different road and illumination conditions. It achieves a detection rate of more than 95% for stationary traffic.