简短公告:紧内存无关并行矩阵乘法通信下界

Hussam Al Daas, Grey Ballard, L. Grigori, Suraj Kumar, Kathryn Rouse
{"title":"简短公告:紧内存无关并行矩阵乘法通信下界","authors":"Hussam Al Daas, Grey Ballard, L. Grigori, Suraj Kumar, Kathryn Rouse","doi":"10.1145/3490148.3538552","DOIUrl":null,"url":null,"abstract":"Communication lower bounds have long been established for matrix multiplication algorithms. However, most methods of asymptotic analysis have either ignored constant factors or not obtained the tightest possible values. The main result of this work is establishing memory-independent communication lower bounds with tight constants for parallel matrix multiplication. Our constants improve on previous work in each of three cases that depend on the relative sizes of the matrix aspect ratios and the number of processors.","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Brief Announcement: Tight Memory-Independent Parallel Matrix Multiplication Communication Lower Bounds\",\"authors\":\"Hussam Al Daas, Grey Ballard, L. Grigori, Suraj Kumar, Kathryn Rouse\",\"doi\":\"10.1145/3490148.3538552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communication lower bounds have long been established for matrix multiplication algorithms. However, most methods of asymptotic analysis have either ignored constant factors or not obtained the tightest possible values. The main result of this work is establishing memory-independent communication lower bounds with tight constants for parallel matrix multiplication. Our constants improve on previous work in each of three cases that depend on the relative sizes of the matrix aspect ratios and the number of processors.\",\"PeriodicalId\":112865,\"journal\":{\"name\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3490148.3538552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于矩阵乘法算法,通信下界早已建立。然而,大多数渐近分析方法要么忽略了常数因素,要么没有得到最接近的可能值。这项工作的主要结果是建立了具有紧常数的并行矩阵乘法的与内存无关的通信下界。在依赖于矩阵长宽比和处理器数量的相对大小的三种情况下,我们的常数都比以前的工作有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brief Announcement: Tight Memory-Independent Parallel Matrix Multiplication Communication Lower Bounds
Communication lower bounds have long been established for matrix multiplication algorithms. However, most methods of asymptotic analysis have either ignored constant factors or not obtained the tightest possible values. The main result of this work is establishing memory-independent communication lower bounds with tight constants for parallel matrix multiplication. Our constants improve on previous work in each of three cases that depend on the relative sizes of the matrix aspect ratios and the number of processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信