Davide Frey, A. Mostéfaoui, Matthieu Perrin, Pierre-Louis Roman, François Taïani
{"title":"精英的速度,大众的一致性:区分大规模分布式系统的最终一致性","authors":"Davide Frey, A. Mostéfaoui, Matthieu Perrin, Pierre-Louis Roman, François Taïani","doi":"10.1109/SRDS.2016.032","DOIUrl":null,"url":null,"abstract":"Eventual consistency is a consistency model that emphasizes liveness over safety, it is often used for its ability to scale as distributed systems grow larger. Eventual consistency tends to be uniformly applied to an entire system, but we argue that there is a growing demand for differentiated eventual consistency requirements. We address this demand with UPS, a novel consistency mechanism that offers differentiated eventual consistency and delivery speed by working in pair with a two-phase epidemic broadcast protocol. We propose a closed-form analysis of our approach's delivery speed, and we evaluate our complete mechanism experimentally on a simulated network of one million nodes. To measure the consistency trade-off, we formally define a novel and scalable consistency metric that operates at runtime. In our simulations, UPS divides by more than 4 the inconsistencies experienced by a majority of the nodes, while reducing the average latency incurred by a small fraction of the nodes from 6 rounds down to 3 rounds.","PeriodicalId":165721,"journal":{"name":"2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Speed for the Elite, Consistency for the Masses: Differentiating Eventual Consistency in Large-Scale Distributed Systems\",\"authors\":\"Davide Frey, A. Mostéfaoui, Matthieu Perrin, Pierre-Louis Roman, François Taïani\",\"doi\":\"10.1109/SRDS.2016.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eventual consistency is a consistency model that emphasizes liveness over safety, it is often used for its ability to scale as distributed systems grow larger. Eventual consistency tends to be uniformly applied to an entire system, but we argue that there is a growing demand for differentiated eventual consistency requirements. We address this demand with UPS, a novel consistency mechanism that offers differentiated eventual consistency and delivery speed by working in pair with a two-phase epidemic broadcast protocol. We propose a closed-form analysis of our approach's delivery speed, and we evaluate our complete mechanism experimentally on a simulated network of one million nodes. To measure the consistency trade-off, we formally define a novel and scalable consistency metric that operates at runtime. In our simulations, UPS divides by more than 4 the inconsistencies experienced by a majority of the nodes, while reducing the average latency incurred by a small fraction of the nodes from 6 rounds down to 3 rounds.\",\"PeriodicalId\":165721,\"journal\":{\"name\":\"2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2016.032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2016.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speed for the Elite, Consistency for the Masses: Differentiating Eventual Consistency in Large-Scale Distributed Systems
Eventual consistency is a consistency model that emphasizes liveness over safety, it is often used for its ability to scale as distributed systems grow larger. Eventual consistency tends to be uniformly applied to an entire system, but we argue that there is a growing demand for differentiated eventual consistency requirements. We address this demand with UPS, a novel consistency mechanism that offers differentiated eventual consistency and delivery speed by working in pair with a two-phase epidemic broadcast protocol. We propose a closed-form analysis of our approach's delivery speed, and we evaluate our complete mechanism experimentally on a simulated network of one million nodes. To measure the consistency trade-off, we formally define a novel and scalable consistency metric that operates at runtime. In our simulations, UPS divides by more than 4 the inconsistencies experienced by a majority of the nodes, while reducing the average latency incurred by a small fraction of the nodes from 6 rounds down to 3 rounds.