探索高效深度神经网络的设计空间

Fuxun Yu, Dimitrios Stamoulis, Di Wang, Dimitrios Lymberopoulos, Xiang Chen
{"title":"探索高效深度神经网络的设计空间","authors":"Fuxun Yu, Dimitrios Stamoulis, Di Wang, Dimitrios Lymberopoulos, Xiang Chen","doi":"10.1109/SEC50012.2020.00043","DOIUrl":null,"url":null,"abstract":"This paper gives an overview of our ongoing work on the design space exploration of efficient deep neural networks (DNNs), specifically on the novel optimization perspectives that past work have mainly overlooked. We cover two complementary aspects of efficient DNN design: (1) static architecture design efficiency and (2) dynamic model execution efficiency. In the static architecture design, one of the major challenges of NAS is the low search efficiency. Different with current mainstream efficient search algorithm optimization, we identify the new perspective in efficient search space design. In the dynamic model execution, current major optimization methods still target at the model structure redundancy, e.g., weight/filter pruning, connection pruning, etc. We instead identify the new dimension of DNN feature map redundancy. By showcasing such new perspectives, further advantages could be potentially attained by integrating both current optimizations and our new perspectives.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Design Space of Efficient Deep Neural Networks\",\"authors\":\"Fuxun Yu, Dimitrios Stamoulis, Di Wang, Dimitrios Lymberopoulos, Xiang Chen\",\"doi\":\"10.1109/SEC50012.2020.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives an overview of our ongoing work on the design space exploration of efficient deep neural networks (DNNs), specifically on the novel optimization perspectives that past work have mainly overlooked. We cover two complementary aspects of efficient DNN design: (1) static architecture design efficiency and (2) dynamic model execution efficiency. In the static architecture design, one of the major challenges of NAS is the low search efficiency. Different with current mainstream efficient search algorithm optimization, we identify the new perspective in efficient search space design. In the dynamic model execution, current major optimization methods still target at the model structure redundancy, e.g., weight/filter pruning, connection pruning, etc. We instead identify the new dimension of DNN feature map redundancy. By showcasing such new perspectives, further advantages could be potentially attained by integrating both current optimizations and our new perspectives.\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了我们在高效深度神经网络(dnn)的设计空间探索方面正在进行的工作,特别是在过去的工作中主要被忽视的新颖优化视角。我们涵盖了高效深度神经网络设计的两个互补方面:(1)静态架构设计效率和(2)动态模型执行效率。在静态架构设计中,NAS的主要挑战之一是搜索效率低。不同于目前主流的高效搜索算法优化,我们在高效搜索空间设计中找到了新的视角。在模型的动态执行中,目前主要的优化方法仍以模型结构冗余为目标,如权值/滤波器剪枝、连接剪枝等。我们转而识别DNN特征映射冗余的新维度。通过展示这样的新视角,通过集成当前的优化和我们的新视角,可能会获得更多的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Design Space of Efficient Deep Neural Networks
This paper gives an overview of our ongoing work on the design space exploration of efficient deep neural networks (DNNs), specifically on the novel optimization perspectives that past work have mainly overlooked. We cover two complementary aspects of efficient DNN design: (1) static architecture design efficiency and (2) dynamic model execution efficiency. In the static architecture design, one of the major challenges of NAS is the low search efficiency. Different with current mainstream efficient search algorithm optimization, we identify the new perspective in efficient search space design. In the dynamic model execution, current major optimization methods still target at the model structure redundancy, e.g., weight/filter pruning, connection pruning, etc. We instead identify the new dimension of DNN feature map redundancy. By showcasing such new perspectives, further advantages could be potentially attained by integrating both current optimizations and our new perspectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信