动态理论中的定量德乔基方法

Jessica Guerand, C. Mouhot
{"title":"动态理论中的定量德乔基方法","authors":"Jessica Guerand, C. Mouhot","doi":"10.5802/jep.203","DOIUrl":null,"url":null,"abstract":"We consider hypoelliptic equations of kinetic Fokker-Planck type, also known as Kolmogorov or ultraparabolic equations, with rough coefficients in the drift-diffusion operator. We give novel short quantitative proofs of the De Giorgi intermediate-value Lemma as well as weak Harnack and Harnack inequalities. This implies H{\\\"o}lder continuity with quantitative estimates. The paper is self-contained.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Quantitative De Giorgi methods in kinetic theory\",\"authors\":\"Jessica Guerand, C. Mouhot\",\"doi\":\"10.5802/jep.203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider hypoelliptic equations of kinetic Fokker-Planck type, also known as Kolmogorov or ultraparabolic equations, with rough coefficients in the drift-diffusion operator. We give novel short quantitative proofs of the De Giorgi intermediate-value Lemma as well as weak Harnack and Harnack inequalities. This implies H{\\\\\\\"o}lder continuity with quantitative estimates. The paper is self-contained.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们考虑在漂移-扩散算子中具有粗糙系数的动力学Fokker-Planck型准椭圆方程,也称为Kolmogorov或超抛物线方程。给出了De Giorgi中值引理以及弱哈纳克不等式和哈纳克不等式的简短定量证明。这意味着H{\ ' o}与定量估计的更大连续性。这张纸是独立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative De Giorgi methods in kinetic theory
We consider hypoelliptic equations of kinetic Fokker-Planck type, also known as Kolmogorov or ultraparabolic equations, with rough coefficients in the drift-diffusion operator. We give novel short quantitative proofs of the De Giorgi intermediate-value Lemma as well as weak Harnack and Harnack inequalities. This implies H{\"o}lder continuity with quantitative estimates. The paper is self-contained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信