知识图谱中不确定地理空间信息的表示

L. Cadorel, A. Tettamanzi, Fabien L. Gandon
{"title":"知识图谱中不确定地理空间信息的表示","authors":"L. Cadorel, A. Tettamanzi, Fabien L. Gandon","doi":"10.1145/3557990.3567588","DOIUrl":null,"url":null,"abstract":"This paper highlights the challenges of representing uncertain geospatial information in knowledge graphs. We propose to use Real Estate advertisements since professionals use a lot of vernacular and vague places in order to promote a house to their target audience. Then, we suggest to model local place names using fuzzy set theory. Finally, we discuss how to build a knowledge graph that represents extracted geospatial objects and their uncertainty.","PeriodicalId":117618,"journal":{"name":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards a representation of uncertain geospatial information in knowledge graphs\",\"authors\":\"L. Cadorel, A. Tettamanzi, Fabien L. Gandon\",\"doi\":\"10.1145/3557990.3567588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper highlights the challenges of representing uncertain geospatial information in knowledge graphs. We propose to use Real Estate advertisements since professionals use a lot of vernacular and vague places in order to promote a house to their target audience. Then, we suggest to model local place names using fuzzy set theory. Finally, we discuss how to build a knowledge graph that represents extracted geospatial objects and their uncertainty.\",\"PeriodicalId\":117618,\"journal\":{\"name\":\"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3557990.3567588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3557990.3567588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文强调了在知识图中表示不确定地理空间信息所面临的挑战。我们建议使用房地产广告,因为专业人士使用大量的白话和模糊的地方来向他们的目标受众推销房子。在此基础上,提出利用模糊集合理论对地名进行建模。最后,我们讨论了如何建立一个知识图来表示提取的地理空间对象及其不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a representation of uncertain geospatial information in knowledge graphs
This paper highlights the challenges of representing uncertain geospatial information in knowledge graphs. We propose to use Real Estate advertisements since professionals use a lot of vernacular and vague places in order to promote a house to their target audience. Then, we suggest to model local place names using fuzzy set theory. Finally, we discuss how to build a knowledge graph that represents extracted geospatial objects and their uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信