{"title":"用于平滑和压缩的概率图像模型","authors":"Chun-hung Li, P. Yuen, P. Tam","doi":"10.1109/ITCC.2000.844180","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of edge preserving smoothing in image processing is tackled by combining a noise corruption model and a region and edge image model. The derivation of the probability model for the first order difference in the gray levels of the region pixels and edge pixels leads to a non-linear filter with coefficients as functions of the estimated noise variance and edge intensity. Such a model-based approach allows the design of improved filters for noise filtering and image compression. Experimental results demonstrate the improved performance of the filter for both synthetic and natural images.","PeriodicalId":146581,"journal":{"name":"Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A probabilistic image model for smoothing and compression\",\"authors\":\"Chun-hung Li, P. Yuen, P. Tam\",\"doi\":\"10.1109/ITCC.2000.844180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of edge preserving smoothing in image processing is tackled by combining a noise corruption model and a region and edge image model. The derivation of the probability model for the first order difference in the gray levels of the region pixels and edge pixels leads to a non-linear filter with coefficients as functions of the estimated noise variance and edge intensity. Such a model-based approach allows the design of improved filters for noise filtering and image compression. Experimental results demonstrate the improved performance of the filter for both synthetic and natural images.\",\"PeriodicalId\":146581,\"journal\":{\"name\":\"Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITCC.2000.844180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2000.844180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A probabilistic image model for smoothing and compression
In this paper, the problem of edge preserving smoothing in image processing is tackled by combining a noise corruption model and a region and edge image model. The derivation of the probability model for the first order difference in the gray levels of the region pixels and edge pixels leads to a non-linear filter with coefficients as functions of the estimated noise variance and edge intensity. Such a model-based approach allows the design of improved filters for noise filtering and image compression. Experimental results demonstrate the improved performance of the filter for both synthetic and natural images.