仿人机器人抓取运动规划

J. Rosell, R. Suárez, N. García, Muhayy Ud Din
{"title":"仿人机器人抓取运动规划","authors":"J. Rosell, R. Suárez, N. García, Muhayy Ud Din","doi":"10.1142/s0219843619500415","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of obtaining the required motions for a humanoid robot to perform grasp actions trying to mimic the coordinated hand–arm movements humans do. The first step is the data acquisition and analysis, which consists in capturing human movements while grasping several everyday objects (covering four possible grasp types), mapping them to the robot and computing the hand motion synergies for the pre-grasp and grasp phases (per grasp type). Then, the grasp and motion synthesis step is done, which consists in generating potential grasps for a given object using the four family types, and planning the motions using a bi-directional multi-goal sampling-based planner, which efficiently guides the motion planning following the synergies in a reduced search space, resulting in paths with human-like appearance. The approach has been tested in simulation, thoroughly compared with other state-of-the-art planning algorithms obtaining better results, and also implemented in a real robot.","PeriodicalId":312776,"journal":{"name":"Int. J. Humanoid Robotics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Planning Grasping Motions for Humanoid Robots\",\"authors\":\"J. Rosell, R. Suárez, N. García, Muhayy Ud Din\",\"doi\":\"10.1142/s0219843619500415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of obtaining the required motions for a humanoid robot to perform grasp actions trying to mimic the coordinated hand–arm movements humans do. The first step is the data acquisition and analysis, which consists in capturing human movements while grasping several everyday objects (covering four possible grasp types), mapping them to the robot and computing the hand motion synergies for the pre-grasp and grasp phases (per grasp type). Then, the grasp and motion synthesis step is done, which consists in generating potential grasps for a given object using the four family types, and planning the motions using a bi-directional multi-goal sampling-based planner, which efficiently guides the motion planning following the synergies in a reduced search space, resulting in paths with human-like appearance. The approach has been tested in simulation, thoroughly compared with other state-of-the-art planning algorithms obtaining better results, and also implemented in a real robot.\",\"PeriodicalId\":312776,\"journal\":{\"name\":\"Int. J. Humanoid Robotics\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Humanoid Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219843619500415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Humanoid Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219843619500415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文解决了获得所需的运动的问题,人形机器人执行抓取动作,试图模仿协调的手-手臂运动的人做。第一步是数据采集和分析,包括在抓取几个日常物体(涵盖四种可能的抓取类型)时捕捉人类运动,将它们映射到机器人并计算预抓取和抓取阶段的手部运动协同效应(每种抓取类型)。然后,完成抓取和运动合成步骤,该步骤包括使用四种族类型生成给定对象的潜在抓取,并使用基于双向多目标采样的规划器进行运动规划,该规划器在减少的搜索空间中有效地指导运动规划遵循协同作用,从而获得具有类似人类外观的路径。该方法已在仿真中进行了测试,与其他最先进的规划算法进行了彻底的比较,获得了更好的结果,并在实际机器人中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planning Grasping Motions for Humanoid Robots
This paper addresses the problem of obtaining the required motions for a humanoid robot to perform grasp actions trying to mimic the coordinated hand–arm movements humans do. The first step is the data acquisition and analysis, which consists in capturing human movements while grasping several everyday objects (covering four possible grasp types), mapping them to the robot and computing the hand motion synergies for the pre-grasp and grasp phases (per grasp type). Then, the grasp and motion synthesis step is done, which consists in generating potential grasps for a given object using the four family types, and planning the motions using a bi-directional multi-goal sampling-based planner, which efficiently guides the motion planning following the synergies in a reduced search space, resulting in paths with human-like appearance. The approach has been tested in simulation, thoroughly compared with other state-of-the-art planning algorithms obtaining better results, and also implemented in a real robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信