利用TF-IDF特征预测股票价格的隐马尔可夫模型实现

V. Ingle, S. Deshmukh
{"title":"利用TF-IDF特征预测股票价格的隐马尔可夫模型实现","authors":"V. Ingle, S. Deshmukh","doi":"10.1145/2979779.2979788","DOIUrl":null,"url":null,"abstract":"Stock data analysis is challenging research area. The proposed analysis works on online news data for prediction of stock market states such as high, low etc. The Hidden Markov Model along with features extracted such as TF-IDF is used to find out next day's stock market value for group of companies. The method can be further extended to adjustment of probability values to calculate tuned model for prediction.","PeriodicalId":298730,"journal":{"name":"Proceedings of the International Conference on Advances in Information Communication Technology & Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Hidden Markov Model Implementation for Prediction of Stock Prices with TF-IDF features\",\"authors\":\"V. Ingle, S. Deshmukh\",\"doi\":\"10.1145/2979779.2979788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock data analysis is challenging research area. The proposed analysis works on online news data for prediction of stock market states such as high, low etc. The Hidden Markov Model along with features extracted such as TF-IDF is used to find out next day's stock market value for group of companies. The method can be further extended to adjustment of probability values to calculate tuned model for prediction.\",\"PeriodicalId\":298730,\"journal\":{\"name\":\"Proceedings of the International Conference on Advances in Information Communication Technology & Computing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Advances in Information Communication Technology & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2979779.2979788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advances in Information Communication Technology & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2979779.2979788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

股票数据分析是一个具有挑战性的研究领域。本文提出的分析方法是利用在线新闻数据来预测股市的高、低等状态。隐马尔可夫模型和提取的特征(如TF-IDF)被用来找出一组公司第二天的股票市场价值。该方法可进一步推广到调整概率值来计算预测的调谐模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden Markov Model Implementation for Prediction of Stock Prices with TF-IDF features
Stock data analysis is challenging research area. The proposed analysis works on online news data for prediction of stock market states such as high, low etc. The Hidden Markov Model along with features extracted such as TF-IDF is used to find out next day's stock market value for group of companies. The method can be further extended to adjustment of probability values to calculate tuned model for prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信