杂波环境下弱多目标检测与跟踪的一种有效方法

Chun Li, X. Bai, Juan Zhao, T. Shan
{"title":"杂波环境下弱多目标检测与跟踪的一种有效方法","authors":"Chun Li, X. Bai, Juan Zhao, T. Shan","doi":"10.1145/3529570.3529593","DOIUrl":null,"url":null,"abstract":"Weak target detection and tracking is a difficult problem, especially in the case of multi-target and strong clutters. Track-before-detect (TBD) is the common method to deal with this problem, and this paper proposes a new effective method based on TBD. Firstly, keystone transform (KT) and phase gradient autofocus (PGA) are used for migration compensation to improve the signal-to-noise ratio (SNR) of moving targets. Then dynamic programming based TBD (DP-TBD) with joint intensity-spatial CFAR (J-CA-CFAR) is presented for noncoherent integration, where J-CA-CFAR uses both intensity and spatial information to achieve automatic target detection. Finally, the effectiveness of the proposed method was demonstrated by experimental results on real data.","PeriodicalId":430367,"journal":{"name":"Proceedings of the 6th International Conference on Digital Signal Processing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Effective Method for Weak Multi-target Detection and Tracking in Clutter Environment\",\"authors\":\"Chun Li, X. Bai, Juan Zhao, T. Shan\",\"doi\":\"10.1145/3529570.3529593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weak target detection and tracking is a difficult problem, especially in the case of multi-target and strong clutters. Track-before-detect (TBD) is the common method to deal with this problem, and this paper proposes a new effective method based on TBD. Firstly, keystone transform (KT) and phase gradient autofocus (PGA) are used for migration compensation to improve the signal-to-noise ratio (SNR) of moving targets. Then dynamic programming based TBD (DP-TBD) with joint intensity-spatial CFAR (J-CA-CFAR) is presented for noncoherent integration, where J-CA-CFAR uses both intensity and spatial information to achieve automatic target detection. Finally, the effectiveness of the proposed method was demonstrated by experimental results on real data.\",\"PeriodicalId\":430367,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Digital Signal Processing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529570.3529593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529570.3529593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

弱目标的检测与跟踪是一个难点问题,特别是在多目标和强杂波情况下。检测前跟踪(TBD)是处理这一问题的常用方法,本文提出了一种新的基于TBD的有效方法。首先,采用梯形变换(KT)和相位梯度自动聚焦(PGA)进行偏移补偿,提高运动目标的信噪比;针对非相干积分,提出了基于动态规划的强度-空间联合CFAR (J-CA-CFAR) TBD (DP-TBD)算法,其中J-CA-CFAR算法同时利用强度和空间信息实现目标自动检测。最后,通过实际数据的实验结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Method for Weak Multi-target Detection and Tracking in Clutter Environment
Weak target detection and tracking is a difficult problem, especially in the case of multi-target and strong clutters. Track-before-detect (TBD) is the common method to deal with this problem, and this paper proposes a new effective method based on TBD. Firstly, keystone transform (KT) and phase gradient autofocus (PGA) are used for migration compensation to improve the signal-to-noise ratio (SNR) of moving targets. Then dynamic programming based TBD (DP-TBD) with joint intensity-spatial CFAR (J-CA-CFAR) is presented for noncoherent integration, where J-CA-CFAR uses both intensity and spatial information to achieve automatic target detection. Finally, the effectiveness of the proposed method was demonstrated by experimental results on real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信