E. Nurse, B. Mashford, Antonio Jimeno-Yepes, Isabell Kiral-Kornek, S. Harrer, D. Freestone
{"title":"使用深度学习解码EEG和LFP信号:航向trunorth","authors":"E. Nurse, B. Mashford, Antonio Jimeno-Yepes, Isabell Kiral-Kornek, S. Harrer, D. Freestone","doi":"10.1145/2903150.2903159","DOIUrl":null,"url":null,"abstract":"Deep learning technology is uniquely suited to analyse neurophysiological signals such as the electroencephalogram (EEG) and local field potentials (LFP) and promises to outperform traditional machine-learning based classification and feature extraction algorithms. Furthermore, novel cognitive computing platforms such as IBM's recently introduced neuromorphic TrueNorth chip allow for deploying deep learning techniques in an ultra-low power environment with a minimum device footprint. Merging deep learning and TrueNorth technologies for real-time analysis of brain-activity data at the point of sensing will create the next generation of wearables at the intersection of neurobionics and artificial intelligence.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Decoding EEG and LFP signals using deep learning: heading TrueNorth\",\"authors\":\"E. Nurse, B. Mashford, Antonio Jimeno-Yepes, Isabell Kiral-Kornek, S. Harrer, D. Freestone\",\"doi\":\"10.1145/2903150.2903159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning technology is uniquely suited to analyse neurophysiological signals such as the electroencephalogram (EEG) and local field potentials (LFP) and promises to outperform traditional machine-learning based classification and feature extraction algorithms. Furthermore, novel cognitive computing platforms such as IBM's recently introduced neuromorphic TrueNorth chip allow for deploying deep learning techniques in an ultra-low power environment with a minimum device footprint. Merging deep learning and TrueNorth technologies for real-time analysis of brain-activity data at the point of sensing will create the next generation of wearables at the intersection of neurobionics and artificial intelligence.\",\"PeriodicalId\":226569,\"journal\":{\"name\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2903150.2903159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2903159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decoding EEG and LFP signals using deep learning: heading TrueNorth
Deep learning technology is uniquely suited to analyse neurophysiological signals such as the electroencephalogram (EEG) and local field potentials (LFP) and promises to outperform traditional machine-learning based classification and feature extraction algorithms. Furthermore, novel cognitive computing platforms such as IBM's recently introduced neuromorphic TrueNorth chip allow for deploying deep learning techniques in an ultra-low power environment with a minimum device footprint. Merging deep learning and TrueNorth technologies for real-time analysis of brain-activity data at the point of sensing will create the next generation of wearables at the intersection of neurobionics and artificial intelligence.