基于复合最小化的大协方差矩阵估计

M. Farné
{"title":"基于复合最小化的大协方差矩阵估计","authors":"M. Farné","doi":"10.6092/UNIBO/AMSDOTTORATO/7250","DOIUrl":null,"url":null,"abstract":"A method to regularize large-dimensional covariance matrices under the assumption of approximate factor model will be presented. Existing methods perform estimation by recovering principal components and sparsifying the residual covariance matrix. In our setting this task is achieved recovering the low rank plus sparse decomposition by least squares minimization under nuclear norm plus $l_1$ norm penalization. In the literature, the best known algorithm to solve this problem is soft thresholding plus singular value thresholding and consistency of estimators is derived under specific assumptions on the eigenvalues of the low rank component matrix. In this paper consistency of the proposed estimator will be derived under the pervasive condition, providing the identification of low rank and sparse spaces by introducing the unshrinking of estimated eigenvalues. Algorithm derivation and convergence analysis are provided, and the new procedure is compared with the existing ones under the same assumptions. The performance of our minimizer is described in a wide simulation study, where various low rank plus sparse settings are simulated according to different parameter values.","PeriodicalId":330529,"journal":{"name":"International Federation of Classification Societies","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Large Covariance Matrix Estimation by Composite Minimization\",\"authors\":\"M. Farné\",\"doi\":\"10.6092/UNIBO/AMSDOTTORATO/7250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method to regularize large-dimensional covariance matrices under the assumption of approximate factor model will be presented. Existing methods perform estimation by recovering principal components and sparsifying the residual covariance matrix. In our setting this task is achieved recovering the low rank plus sparse decomposition by least squares minimization under nuclear norm plus $l_1$ norm penalization. In the literature, the best known algorithm to solve this problem is soft thresholding plus singular value thresholding and consistency of estimators is derived under specific assumptions on the eigenvalues of the low rank component matrix. In this paper consistency of the proposed estimator will be derived under the pervasive condition, providing the identification of low rank and sparse spaces by introducing the unshrinking of estimated eigenvalues. Algorithm derivation and convergence analysis are provided, and the new procedure is compared with the existing ones under the same assumptions. The performance of our minimizer is described in a wide simulation study, where various low rank plus sparse settings are simulated according to different parameter values.\",\"PeriodicalId\":330529,\"journal\":{\"name\":\"International Federation of Classification Societies\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Federation of Classification Societies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/UNIBO/AMSDOTTORATO/7250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Federation of Classification Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/UNIBO/AMSDOTTORATO/7250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在近似因子模型假设下,提出了一种对大维协方差矩阵进行正则化的方法。现有方法通过恢复主成分和稀疏残差协方差矩阵来进行估计。在我们的设置中,该任务是通过核范数加$l_1$范数惩罚下的最小二乘最小化来恢复低秩加稀疏分解。在文献中,解决该问题最著名的算法是软阈值法加奇异值阈值法,估计量的一致性是在对低秩分量矩阵的特征值的特定假设下推导出来的。本文通过引入估计特征值的不收缩性,推导了该估计量在普适条件下的相合性,提供了对低秩稀疏空间的识别。给出了算法推导和收敛性分析,并在相同的假设条件下,将新算法与现有算法进行了比较。在广泛的模拟研究中描述了我们的最小化器的性能,其中根据不同的参数值模拟了各种低秩加稀疏设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Covariance Matrix Estimation by Composite Minimization
A method to regularize large-dimensional covariance matrices under the assumption of approximate factor model will be presented. Existing methods perform estimation by recovering principal components and sparsifying the residual covariance matrix. In our setting this task is achieved recovering the low rank plus sparse decomposition by least squares minimization under nuclear norm plus $l_1$ norm penalization. In the literature, the best known algorithm to solve this problem is soft thresholding plus singular value thresholding and consistency of estimators is derived under specific assumptions on the eigenvalues of the low rank component matrix. In this paper consistency of the proposed estimator will be derived under the pervasive condition, providing the identification of low rank and sparse spaces by introducing the unshrinking of estimated eigenvalues. Algorithm derivation and convergence analysis are provided, and the new procedure is compared with the existing ones under the same assumptions. The performance of our minimizer is described in a wide simulation study, where various low rank plus sparse settings are simulated according to different parameter values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信