Pranay Sharma, A. Saucan, Donald J. Bucci, P. Varshney
{"title":"测量原点不确定下的分散自定位与跟踪","authors":"Pranay Sharma, A. Saucan, Donald J. Bucci, P. Varshney","doi":"10.23919/fusion43075.2019.9011400","DOIUrl":null,"url":null,"abstract":"We propose an algorithm for simultaneous Cooperative Self-localization (CS) of a network of mobile agents and multi-target tracking (MTT) under complete data association uncertainty. Specifically, the associations between measurements and objects, i.e., agents and targets, are unknown. Existing CS-MTT algorithms do not assume origin uncertainty for both interagent and agent-target measurements. Due to the joint density being intractable, a message passing scheme is employed to approximately infer the marginals of agent and target states, where the number of targets is unknown and time-varying. Based on average consensus, we propose a distributed Gaussian implementation of the proposed method, which only requires communication between one-hop neighbors. Numerical experiments show the improved performance of the proposed CS-MTT algorithm as compared to the conventional approach of separate localization followed by tracking.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Decentralized Self-localization and Tracking Under Measurement Origin Uncertainty\",\"authors\":\"Pranay Sharma, A. Saucan, Donald J. Bucci, P. Varshney\",\"doi\":\"10.23919/fusion43075.2019.9011400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an algorithm for simultaneous Cooperative Self-localization (CS) of a network of mobile agents and multi-target tracking (MTT) under complete data association uncertainty. Specifically, the associations between measurements and objects, i.e., agents and targets, are unknown. Existing CS-MTT algorithms do not assume origin uncertainty for both interagent and agent-target measurements. Due to the joint density being intractable, a message passing scheme is employed to approximately infer the marginals of agent and target states, where the number of targets is unknown and time-varying. Based on average consensus, we propose a distributed Gaussian implementation of the proposed method, which only requires communication between one-hop neighbors. Numerical experiments show the improved performance of the proposed CS-MTT algorithm as compared to the conventional approach of separate localization followed by tracking.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Decentralized Self-localization and Tracking Under Measurement Origin Uncertainty
We propose an algorithm for simultaneous Cooperative Self-localization (CS) of a network of mobile agents and multi-target tracking (MTT) under complete data association uncertainty. Specifically, the associations between measurements and objects, i.e., agents and targets, are unknown. Existing CS-MTT algorithms do not assume origin uncertainty for both interagent and agent-target measurements. Due to the joint density being intractable, a message passing scheme is employed to approximately infer the marginals of agent and target states, where the number of targets is unknown and time-varying. Based on average consensus, we propose a distributed Gaussian implementation of the proposed method, which only requires communication between one-hop neighbors. Numerical experiments show the improved performance of the proposed CS-MTT algorithm as compared to the conventional approach of separate localization followed by tracking.