基于深度学习技术的天文图像分析与处理

Sandeep Vy, Snigdha Sen, K. Santosh
{"title":"基于深度学习技术的天文图像分析与处理","authors":"Sandeep Vy, Snigdha Sen, K. Santosh","doi":"10.1109/CONECCT52877.2021.9622583","DOIUrl":null,"url":null,"abstract":"Deep Learning techniques are widely used in various use cases like image detection, pattern recognition, computer vision, and prediction, etc. These days, Convolutional neural networks(CNN) which is an efficient algorithm of Deep Learning are also extensively used in astronomical image processing. In this work, we implemented different architectural models like AlexNet, VGG16, ResNe50, InceptionV3,Xception to classify and predict the Redshift(z) values of unlabeled galaxy images taken from the EFIGI catalog and galaxy-zoo image dataset from the Kaggle website. In addition to these pre-built architectural models, we have introduced a novel, customized CNN classifier and Redshift(z) predictor models to study the behavior of CNN layers and to achieve reasonable accuracy by fine-tuning hyperparameters. Our customized CNN Classifier model achieved a considerably good accuracy of 92.3% with 87.3% validation loss in galaxy classification. Whereas in Redshift(z) prediction, our novel CNN Redshift(z) predictor model achieved a very low loss of 0.000158 when compared to other pre-built architectures.","PeriodicalId":164499,"journal":{"name":"2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analyzing and Processing of Astronomical Images using Deep Learning Techniques\",\"authors\":\"Sandeep Vy, Snigdha Sen, K. Santosh\",\"doi\":\"10.1109/CONECCT52877.2021.9622583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning techniques are widely used in various use cases like image detection, pattern recognition, computer vision, and prediction, etc. These days, Convolutional neural networks(CNN) which is an efficient algorithm of Deep Learning are also extensively used in astronomical image processing. In this work, we implemented different architectural models like AlexNet, VGG16, ResNe50, InceptionV3,Xception to classify and predict the Redshift(z) values of unlabeled galaxy images taken from the EFIGI catalog and galaxy-zoo image dataset from the Kaggle website. In addition to these pre-built architectural models, we have introduced a novel, customized CNN classifier and Redshift(z) predictor models to study the behavior of CNN layers and to achieve reasonable accuracy by fine-tuning hyperparameters. Our customized CNN Classifier model achieved a considerably good accuracy of 92.3% with 87.3% validation loss in galaxy classification. Whereas in Redshift(z) prediction, our novel CNN Redshift(z) predictor model achieved a very low loss of 0.000158 when compared to other pre-built architectures.\",\"PeriodicalId\":164499,\"journal\":{\"name\":\"2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONECCT52877.2021.9622583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT52877.2021.9622583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

深度学习技术被广泛应用于图像检测、模式识别、计算机视觉和预测等各种用例中。最近,卷积神经网络(CNN)作为一种高效的深度学习算法也被广泛应用于天文图像处理。在这项工作中,我们实现了AlexNet、VGG16、ResNe50、InceptionV3、Xception等不同的架构模型,对来自EFIGI目录和Kaggle网站的星系动物园图像数据集的未标记星系图像进行分类和预测红移(z)值。除了这些预先构建的架构模型之外,我们还引入了一种新颖的定制CNN分类器和Redshift(z)预测器模型来研究CNN层的行为,并通过微调超参数来达到合理的精度。我们定制的CNN Classifier模型在星系分类中获得了相当好的准确率,达到92.3%,验证损失为87.3%。而在红移(z)预测中,与其他预构建的架构相比,我们的新颖CNN红移(z)预测模型的损失非常低,为0.000158。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing and Processing of Astronomical Images using Deep Learning Techniques
Deep Learning techniques are widely used in various use cases like image detection, pattern recognition, computer vision, and prediction, etc. These days, Convolutional neural networks(CNN) which is an efficient algorithm of Deep Learning are also extensively used in astronomical image processing. In this work, we implemented different architectural models like AlexNet, VGG16, ResNe50, InceptionV3,Xception to classify and predict the Redshift(z) values of unlabeled galaxy images taken from the EFIGI catalog and galaxy-zoo image dataset from the Kaggle website. In addition to these pre-built architectural models, we have introduced a novel, customized CNN classifier and Redshift(z) predictor models to study the behavior of CNN layers and to achieve reasonable accuracy by fine-tuning hyperparameters. Our customized CNN Classifier model achieved a considerably good accuracy of 92.3% with 87.3% validation loss in galaxy classification. Whereas in Redshift(z) prediction, our novel CNN Redshift(z) predictor model achieved a very low loss of 0.000158 when compared to other pre-built architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信