关于三元弯曲函数的Gibbs置换矩阵的若干注释

R. Stankovic, M. Stankovic, C. Moraga, J. Astola
{"title":"关于三元弯曲函数的Gibbs置换矩阵的若干注释","authors":"R. Stankovic, M. Stankovic, C. Moraga, J. Astola","doi":"10.1109/ISMVL57333.2023.00024","DOIUrl":null,"url":null,"abstract":"As in the binary case, ternary bent functions are a very small portion of the set of all ternary functions for a given number of variables. For example, for n = 2, there are 486 ternary bent functions out of 19683 ternary functions, which is 2, 47%, and this number reduces exponentially with the increase of n. However, finding, or alternatively, constructing them is a challenging task. A possible approach is based upon the manipulation of known ternary bent functions to construct other ternary bent functions. In this paper, we define Gibbs permutation matrices derived from the Gibbs derivative with respect to the Vilenkin-Chrestenson transform and propose their usage in constructing bent functions. The method can be extended to p-valued bent functions, where p is a prime larger than 3.","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on Gibbs Permutation Matrices for Ternary Bent Functions\",\"authors\":\"R. Stankovic, M. Stankovic, C. Moraga, J. Astola\",\"doi\":\"10.1109/ISMVL57333.2023.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As in the binary case, ternary bent functions are a very small portion of the set of all ternary functions for a given number of variables. For example, for n = 2, there are 486 ternary bent functions out of 19683 ternary functions, which is 2, 47%, and this number reduces exponentially with the increase of n. However, finding, or alternatively, constructing them is a challenging task. A possible approach is based upon the manipulation of known ternary bent functions to construct other ternary bent functions. In this paper, we define Gibbs permutation matrices derived from the Gibbs derivative with respect to the Vilenkin-Chrestenson transform and propose their usage in constructing bent functions. The method can be extended to p-valued bent functions, where p is a prime larger than 3.\",\"PeriodicalId\":419220,\"journal\":{\"name\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL57333.2023.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与二元情况一样,对于给定数量的变量,三元弯曲函数只占所有三元函数集合的很小一部分。例如,当n = 2时,19683个三元函数中有486个三元弯曲函数,占2.47%,随着n的增加,这个数字呈指数减少。然而,找到或构造它们是一项具有挑战性的任务。一种可能的方法是基于对已知三元弯曲函数的操作来构造其他三元弯曲函数。本文定义了由Gibbs导数对vilenkin - christensen变换导出的Gibbs置换矩阵,并给出了它们在构造弯曲函数中的应用。该方法可推广到p值弯曲函数,其中p是大于3的素数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on Gibbs Permutation Matrices for Ternary Bent Functions
As in the binary case, ternary bent functions are a very small portion of the set of all ternary functions for a given number of variables. For example, for n = 2, there are 486 ternary bent functions out of 19683 ternary functions, which is 2, 47%, and this number reduces exponentially with the increase of n. However, finding, or alternatively, constructing them is a challenging task. A possible approach is based upon the manipulation of known ternary bent functions to construct other ternary bent functions. In this paper, we define Gibbs permutation matrices derived from the Gibbs derivative with respect to the Vilenkin-Chrestenson transform and propose their usage in constructing bent functions. The method can be extended to p-valued bent functions, where p is a prime larger than 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信