{"title":"分段连续多项式拟合的信号去噪方法","authors":"Aykut Yildiz, O. Arikan","doi":"10.1109/SIU.2010.5651446","DOIUrl":null,"url":null,"abstract":"Piecewise smooth signal denoising is cast as a non-linear optimization problem in terms of transition boundaries and a parametric smooth signal family. Optimal transition boundaries for a given number of transitions are obtained by using particle swarm optimization. The piece-wise smooth section parameters are obtained as the maximum likelihood estimates conditioned on the optimal transition boundaries. The proposed algorithm is extended to the case where the number of transition boundaries are unknown by sequentially increasing number of sections until the residual error is at the level of noise standard deviation. Performance comparison with the state of the art techniques reveals the important advantages of the proposed technique.","PeriodicalId":152297,"journal":{"name":"2010 IEEE 18th Signal Processing and Communications Applications Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signal denoising by piecewise continuous polynomial fitting\",\"authors\":\"Aykut Yildiz, O. Arikan\",\"doi\":\"10.1109/SIU.2010.5651446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piecewise smooth signal denoising is cast as a non-linear optimization problem in terms of transition boundaries and a parametric smooth signal family. Optimal transition boundaries for a given number of transitions are obtained by using particle swarm optimization. The piece-wise smooth section parameters are obtained as the maximum likelihood estimates conditioned on the optimal transition boundaries. The proposed algorithm is extended to the case where the number of transition boundaries are unknown by sequentially increasing number of sections until the residual error is at the level of noise standard deviation. Performance comparison with the state of the art techniques reveals the important advantages of the proposed technique.\",\"PeriodicalId\":152297,\"journal\":{\"name\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2010.5651446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 18th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2010.5651446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Signal denoising by piecewise continuous polynomial fitting
Piecewise smooth signal denoising is cast as a non-linear optimization problem in terms of transition boundaries and a parametric smooth signal family. Optimal transition boundaries for a given number of transitions are obtained by using particle swarm optimization. The piece-wise smooth section parameters are obtained as the maximum likelihood estimates conditioned on the optimal transition boundaries. The proposed algorithm is extended to the case where the number of transition boundaries are unknown by sequentially increasing number of sections until the residual error is at the level of noise standard deviation. Performance comparison with the state of the art techniques reveals the important advantages of the proposed technique.