{"title":"关于简型λ微积分的广义度量空间","authors":"Paolo Pistone","doi":"10.1109/LICS52264.2021.9470696","DOIUrl":null,"url":null,"abstract":"Generalized metrics, arising from Lawvere’s view of metric spaces as enriched categories, have been widely applied in denotational semantics as a way to measure to which extent two programs behave in a similar, although non equivalent, way. However, the application of generalized metrics to higher-order languages like the simply typed lambda calculus has so far proved unsatisfactory. In this paper we investigate a new approach to the construction of cartesian closed categories of generalized metric spaces. Our starting point is a quantitative semantics based on a generalization of usual logical relations. Within this setting, we show that several families of generalized metrics provide ways to extend the Euclidean metric to all higher-order types.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On Generalized Metric Spaces for the Simply Typed Lambda-Calculus\",\"authors\":\"Paolo Pistone\",\"doi\":\"10.1109/LICS52264.2021.9470696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized metrics, arising from Lawvere’s view of metric spaces as enriched categories, have been widely applied in denotational semantics as a way to measure to which extent two programs behave in a similar, although non equivalent, way. However, the application of generalized metrics to higher-order languages like the simply typed lambda calculus has so far proved unsatisfactory. In this paper we investigate a new approach to the construction of cartesian closed categories of generalized metric spaces. Our starting point is a quantitative semantics based on a generalization of usual logical relations. Within this setting, we show that several families of generalized metrics provide ways to extend the Euclidean metric to all higher-order types.\",\"PeriodicalId\":174663,\"journal\":{\"name\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS52264.2021.9470696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Generalized Metric Spaces for the Simply Typed Lambda-Calculus
Generalized metrics, arising from Lawvere’s view of metric spaces as enriched categories, have been widely applied in denotational semantics as a way to measure to which extent two programs behave in a similar, although non equivalent, way. However, the application of generalized metrics to higher-order languages like the simply typed lambda calculus has so far proved unsatisfactory. In this paper we investigate a new approach to the construction of cartesian closed categories of generalized metric spaces. Our starting point is a quantitative semantics based on a generalization of usual logical relations. Within this setting, we show that several families of generalized metrics provide ways to extend the Euclidean metric to all higher-order types.