K-Means、k - means++和模糊C-Means聚类算法的比较研究

Akanksha Kapoor, Abhishek Singhal
{"title":"K-Means、k - means++和模糊C-Means聚类算法的比较研究","authors":"Akanksha Kapoor, Abhishek Singhal","doi":"10.1109/CIACT.2017.7977272","DOIUrl":null,"url":null,"abstract":"Clustering is essentially a procedure of grouping a set of objects in such a manner that items within the same clusters are more akin to each other compared with those data point or objects in different amassments or clusters. This paper discusses partition-predicated clustering techniques, such as K-Means, K-Means++ and object predicated Fuzzy C-Means clustering algorithm. This paper proposes a method for getting better clustering results by application of sorted and unsorted data into the algorithms. Elapsed time & total number of iterations are the factors on which, the behavioral patterns are analyzed. The experimental results shows that passing the sorted data instead of unsorted data not only effects the time complexity but withal ameliorates performance of these clustering techniques.","PeriodicalId":218079,"journal":{"name":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"A comparative study of K-Means, K-Means++ and Fuzzy C-Means clustering algorithms\",\"authors\":\"Akanksha Kapoor, Abhishek Singhal\",\"doi\":\"10.1109/CIACT.2017.7977272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is essentially a procedure of grouping a set of objects in such a manner that items within the same clusters are more akin to each other compared with those data point or objects in different amassments or clusters. This paper discusses partition-predicated clustering techniques, such as K-Means, K-Means++ and object predicated Fuzzy C-Means clustering algorithm. This paper proposes a method for getting better clustering results by application of sorted and unsorted data into the algorithms. Elapsed time & total number of iterations are the factors on which, the behavioral patterns are analyzed. The experimental results shows that passing the sorted data instead of unsorted data not only effects the time complexity but withal ameliorates performance of these clustering techniques.\",\"PeriodicalId\":218079,\"journal\":{\"name\":\"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIACT.2017.7977272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIACT.2017.7977272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

聚类本质上是一个对一组对象进行分组的过程,在这种方式下,同一集群中的项目与不同集群或集群中的数据点或对象相比,彼此之间更相似。本文讨论了划分预测聚类技术,如K-Means、k - means++和对象预测模糊C-Means聚类算法。本文提出了一种将排序和未排序数据应用到算法中的方法,以获得更好的聚类结果。运行时间和总迭代次数是分析行为模式的因素。实验结果表明,传递排序数据而不是传递未排序数据不仅影响了时间复杂度,而且改善了聚类技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of K-Means, K-Means++ and Fuzzy C-Means clustering algorithms
Clustering is essentially a procedure of grouping a set of objects in such a manner that items within the same clusters are more akin to each other compared with those data point or objects in different amassments or clusters. This paper discusses partition-predicated clustering techniques, such as K-Means, K-Means++ and object predicated Fuzzy C-Means clustering algorithm. This paper proposes a method for getting better clustering results by application of sorted and unsorted data into the algorithms. Elapsed time & total number of iterations are the factors on which, the behavioral patterns are analyzed. The experimental results shows that passing the sorted data instead of unsorted data not only effects the time complexity but withal ameliorates performance of these clustering techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信