深度图像中的多人检测

M. H. Khan, Kimiaki Shirahama, M. S. Farid, M. Grzegorzek
{"title":"深度图像中的多人检测","authors":"M. H. Khan, Kimiaki Shirahama, M. S. Farid, M. Grzegorzek","doi":"10.1109/MMSP.2016.7813385","DOIUrl":null,"url":null,"abstract":"Most human detection algorithms in depth images perform well in detecting and tracking the movements of a single human object. However, their performance is rather poor when the person is occluded by other objects or when there are multiple humans present in the scene. In this paper, we propose a novel human detection technique which analyzes the edges in depth image to detect multiple people. The proposed technique detects a human head through a fast template matching algorithm and verifies it through a 3D model fitting technique. The entire human body is extracted from the image by using a simple segmentation scheme comprising a few morphological operators. Our experimental results on three large human detection datasets and the comparison with the state-of-the-art method showed an excellent performance achieving a detection rate of 94.53% with a small false alarm of 0.82%.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Multiple human detection in depth images\",\"authors\":\"M. H. Khan, Kimiaki Shirahama, M. S. Farid, M. Grzegorzek\",\"doi\":\"10.1109/MMSP.2016.7813385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most human detection algorithms in depth images perform well in detecting and tracking the movements of a single human object. However, their performance is rather poor when the person is occluded by other objects or when there are multiple humans present in the scene. In this paper, we propose a novel human detection technique which analyzes the edges in depth image to detect multiple people. The proposed technique detects a human head through a fast template matching algorithm and verifies it through a 3D model fitting technique. The entire human body is extracted from the image by using a simple segmentation scheme comprising a few morphological operators. Our experimental results on three large human detection datasets and the comparison with the state-of-the-art method showed an excellent performance achieving a detection rate of 94.53% with a small false alarm of 0.82%.\",\"PeriodicalId\":113192,\"journal\":{\"name\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2016.7813385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

大多数深度图像中的人体检测算法在检测和跟踪单个人体物体的运动方面表现良好。然而,当人物被其他物体遮挡或场景中有多人在场时,它们的性能就会很差。本文提出了一种基于深度图像边缘分析的人体检测方法。该技术通过快速模板匹配算法检测人头,并通过三维模型拟合技术进行验证。使用包含少量形态学算子的简单分割方案从图像中提取整个人体。我们在三个大型人体检测数据集上的实验结果以及与最先进的方法的比较表明,我们的方法具有优异的性能,检测率为94.53%,虚警率为0.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple human detection in depth images
Most human detection algorithms in depth images perform well in detecting and tracking the movements of a single human object. However, their performance is rather poor when the person is occluded by other objects or when there are multiple humans present in the scene. In this paper, we propose a novel human detection technique which analyzes the edges in depth image to detect multiple people. The proposed technique detects a human head through a fast template matching algorithm and verifies it through a 3D model fitting technique. The entire human body is extracted from the image by using a simple segmentation scheme comprising a few morphological operators. Our experimental results on three large human detection datasets and the comparison with the state-of-the-art method showed an excellent performance achieving a detection rate of 94.53% with a small false alarm of 0.82%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信