P. Nadeau, M. Mimee, Sean Carim, T. Lu, A. Chandrakasan
{"title":"21.1纳瓦电路接口到全细胞细菌传感器","authors":"P. Nadeau, M. Mimee, Sean Carim, T. Lu, A. Chandrakasan","doi":"10.1109/ISSCC.2017.7870406","DOIUrl":null,"url":null,"abstract":"Genetically engineered, re-programmable bacterial cells are fast emerging as a platform for small molecule detection in challenging environments [1]. A key barrier to widespread deployment of autonomous bacterial sensors is the detection of low-level bioluminescence, which is typically quantified with power-hungry (watt-level) detection hardware such as Photo Multiplier Tubes (PMT). Prior work has reported successful integrated mW-level detection of bioluminescence by using PN / PIN photodiodes with OTA-based [2] and active-pixel-sensor circuits [3,4]. Our goal was to develop an even lower power readout to enable harvesting as a viable source of energy for a future batteryless autonomous biological sensor node, with applications in distributed remote environmental sensing, or in vivo biochemical sensing.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"21.1 Nanowatt circuit interface to whole-cell bacterial sensors\",\"authors\":\"P. Nadeau, M. Mimee, Sean Carim, T. Lu, A. Chandrakasan\",\"doi\":\"10.1109/ISSCC.2017.7870406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetically engineered, re-programmable bacterial cells are fast emerging as a platform for small molecule detection in challenging environments [1]. A key barrier to widespread deployment of autonomous bacterial sensors is the detection of low-level bioluminescence, which is typically quantified with power-hungry (watt-level) detection hardware such as Photo Multiplier Tubes (PMT). Prior work has reported successful integrated mW-level detection of bioluminescence by using PN / PIN photodiodes with OTA-based [2] and active-pixel-sensor circuits [3,4]. Our goal was to develop an even lower power readout to enable harvesting as a viable source of energy for a future batteryless autonomous biological sensor node, with applications in distributed remote environmental sensing, or in vivo biochemical sensing.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
21.1 Nanowatt circuit interface to whole-cell bacterial sensors
Genetically engineered, re-programmable bacterial cells are fast emerging as a platform for small molecule detection in challenging environments [1]. A key barrier to widespread deployment of autonomous bacterial sensors is the detection of low-level bioluminescence, which is typically quantified with power-hungry (watt-level) detection hardware such as Photo Multiplier Tubes (PMT). Prior work has reported successful integrated mW-level detection of bioluminescence by using PN / PIN photodiodes with OTA-based [2] and active-pixel-sensor circuits [3,4]. Our goal was to develop an even lower power readout to enable harvesting as a viable source of energy for a future batteryless autonomous biological sensor node, with applications in distributed remote environmental sensing, or in vivo biochemical sensing.