面向不平衡文本数据的深度学习分类器研究

Luthfiah Azizah, P. Khotimah, Andria Arisal, A. Rozie, D. Munandar, D. Riswantini, Ekasari Nugraheni, W. Suwarningsih, D. Kurniasari
{"title":"面向不平衡文本数据的深度学习分类器研究","authors":"Luthfiah Azizah, P. Khotimah, Andria Arisal, A. Rozie, D. Munandar, D. Riswantini, Ekasari Nugraheni, W. Suwarningsih, D. Kurniasari","doi":"10.1109/NISS55057.2022.10085611","DOIUrl":null,"url":null,"abstract":"Class imbalance is an important classification problem where failure to identify events can be hazardous due to failure of solution preparation or opportune handling. Minorities are mostly more consequential in such cases. It is necessary to know a reliable classifier for imbalanced classes. This study examines several conventional machine learning and deep learning methods to compare the performance of each method on dataset with imbalanced classes. We use COVID-19 online news titles to simulate different class imbalance ratios. The results of our study demonstrate the superiority of the CNN with embedding layer method on a news titles dataset of 16,844 data points towards imbalance ratios of 37%, 30%, 20%, 10%, and 1%. However, CNN with embedding layer showed a noticeable performance degradation at an imbalance ratio of 1%.","PeriodicalId":138637,"journal":{"name":"2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Investigation into Deep Learning Classifiers Towards Imbalanced Text Data\",\"authors\":\"Luthfiah Azizah, P. Khotimah, Andria Arisal, A. Rozie, D. Munandar, D. Riswantini, Ekasari Nugraheni, W. Suwarningsih, D. Kurniasari\",\"doi\":\"10.1109/NISS55057.2022.10085611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class imbalance is an important classification problem where failure to identify events can be hazardous due to failure of solution preparation or opportune handling. Minorities are mostly more consequential in such cases. It is necessary to know a reliable classifier for imbalanced classes. This study examines several conventional machine learning and deep learning methods to compare the performance of each method on dataset with imbalanced classes. We use COVID-19 online news titles to simulate different class imbalance ratios. The results of our study demonstrate the superiority of the CNN with embedding layer method on a news titles dataset of 16,844 data points towards imbalance ratios of 37%, 30%, 20%, 10%, and 1%. However, CNN with embedding layer showed a noticeable performance degradation at an imbalance ratio of 1%.\",\"PeriodicalId\":138637,\"journal\":{\"name\":\"2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NISS55057.2022.10085611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NISS55057.2022.10085611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

类不平衡是一个重要的分类问题,由于解决方案准备或及时处理的失败,无法识别事件可能是危险的。在这种情况下,少数族裔往往更为重要。对于不平衡类,有必要知道一个可靠的分类器。本研究考察了几种传统的机器学习和深度学习方法,比较了每种方法在不平衡类数据集上的性能。我们使用COVID-19在线新闻标题来模拟不同的班级失衡比例。我们的研究结果表明,在一个包含16,844个数据点的新闻标题数据集上,CNN嵌入层方法在37%、30%、20%、10%和1%的不平衡比率上具有优势。然而,当不平衡比为1%时,有嵌入层的CNN表现出明显的性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Investigation into Deep Learning Classifiers Towards Imbalanced Text Data
Class imbalance is an important classification problem where failure to identify events can be hazardous due to failure of solution preparation or opportune handling. Minorities are mostly more consequential in such cases. It is necessary to know a reliable classifier for imbalanced classes. This study examines several conventional machine learning and deep learning methods to compare the performance of each method on dataset with imbalanced classes. We use COVID-19 online news titles to simulate different class imbalance ratios. The results of our study demonstrate the superiority of the CNN with embedding layer method on a news titles dataset of 16,844 data points towards imbalance ratios of 37%, 30%, 20%, 10%, and 1%. However, CNN with embedding layer showed a noticeable performance degradation at an imbalance ratio of 1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信