视频人脸识别:组件特征聚合网络(C-FAN)

Sixue Gong, Yichun Shi, N. Kalka, Anil K. Jain
{"title":"视频人脸识别:组件特征聚合网络(C-FAN)","authors":"Sixue Gong, Yichun Shi, N. Kalka, Anil K. Jain","doi":"10.1109/ICB45273.2019.8987385","DOIUrl":null,"url":null,"abstract":"We propose a new approach to video face recognition. Our component-wise feature aggregation network (C-FAN) accepts a set of face images of a subject as an input, and outputs a single feature vector as the face representation of the set for the recognition task. The whole network is trained in two steps: (i) train a base CNN for still image face recognition; (ii) add an aggregation module to the base network to learn the quality value for each feature component, which adaptively aggregates deep feature vectors into a single vector to represent the face in a video. C-FAN automatically learns to retain salient face features with high quality scores while suppressing features with low quality scores. The experimental results on three benchmark datasets, YouTube Faces [39], IJB-A [13], and IJB-S [12] show that the proposed C-FAN network is capable of generating a compact feature vector with 512 dimensions for a video sequence by efficiently aggregating feature vectors of all the video frames to achieve state of the art performance.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Video Face Recognition: Component-wise Feature Aggregation Network (C-FAN)\",\"authors\":\"Sixue Gong, Yichun Shi, N. Kalka, Anil K. Jain\",\"doi\":\"10.1109/ICB45273.2019.8987385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new approach to video face recognition. Our component-wise feature aggregation network (C-FAN) accepts a set of face images of a subject as an input, and outputs a single feature vector as the face representation of the set for the recognition task. The whole network is trained in two steps: (i) train a base CNN for still image face recognition; (ii) add an aggregation module to the base network to learn the quality value for each feature component, which adaptively aggregates deep feature vectors into a single vector to represent the face in a video. C-FAN automatically learns to retain salient face features with high quality scores while suppressing features with low quality scores. The experimental results on three benchmark datasets, YouTube Faces [39], IJB-A [13], and IJB-S [12] show that the proposed C-FAN network is capable of generating a compact feature vector with 512 dimensions for a video sequence by efficiently aggregating feature vectors of all the video frames to achieve state of the art performance.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

提出了一种新的视频人脸识别方法。我们的组件智能特征聚合网络(C-FAN)接受一组受试者的面部图像作为输入,并输出单个特征向量作为识别任务集的面部表示。整个网络分为两个步骤进行训练:(i)训练用于静止图像人脸识别的基础CNN;(ii)在基网络中加入聚合模块,学习每个特征分量的质量值,自适应地将深度特征向量聚合为单个向量,表示视频中的人脸。C-FAN自动学习保留高质量分数的显著特征,同时抑制低质量分数的特征。在YouTube Faces[39]、ikb - a[13]和ikb - s[12]三个基准数据集上的实验结果表明,所提出的C-FAN网络能够通过有效地聚合所有视频帧的特征向量,为视频序列生成512维的紧凑特征向量,达到最优性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Face Recognition: Component-wise Feature Aggregation Network (C-FAN)
We propose a new approach to video face recognition. Our component-wise feature aggregation network (C-FAN) accepts a set of face images of a subject as an input, and outputs a single feature vector as the face representation of the set for the recognition task. The whole network is trained in two steps: (i) train a base CNN for still image face recognition; (ii) add an aggregation module to the base network to learn the quality value for each feature component, which adaptively aggregates deep feature vectors into a single vector to represent the face in a video. C-FAN automatically learns to retain salient face features with high quality scores while suppressing features with low quality scores. The experimental results on three benchmark datasets, YouTube Faces [39], IJB-A [13], and IJB-S [12] show that the proposed C-FAN network is capable of generating a compact feature vector with 512 dimensions for a video sequence by efficiently aggregating feature vectors of all the video frames to achieve state of the art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信