{"title":"托卡马克物理实验磁体的猝灭检测与仪器","authors":"M. Chaplin, W. Hassenzahl, H. Schultz","doi":"10.1109/FUSION.1993.518447","DOIUrl":null,"url":null,"abstract":"The design of the Local Instrumentation & Control (I&C) System for the Tokamak Physics Experiment (TPX) superconducting PF & TF magnets is presented. The local I&C system monitors the status of the magnet systems and initiates the proper control sequences to protect the magnets from any foreseeable fault. Local I&C also stores magnet-system data for analysis and archiving. Quench Detection for the TPX magnets must use a minimum of two independent sensing methods and is allowed a detection time of one second. Proposed detection methods include the measurement of; (1) normal-zone resistive voltage, (2) cooling-path helium flow, (3) local temperature in the winding pack, (4) local pressure in the winding pack. Fiber-optic based isolation systems are used to remove high common-mode magnet voltages and eliminate ground loops. The data acquisition and fault-detection systems are computer based. The design of the local I&C system incorporates redundant, fault-tolerant, and/or fail-safe features at all component levels. As part of a quench detection R&D plan, a Quench Detection Model Coil has been proposed to test all detection methods. Initial cost estimates and schedule for the local I&C system are presented.","PeriodicalId":365814,"journal":{"name":"15th IEEE/NPSS Symposium. Fusion Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quench detection & instrumentation for the Tokamak Physics Experiment magnets\",\"authors\":\"M. Chaplin, W. Hassenzahl, H. Schultz\",\"doi\":\"10.1109/FUSION.1993.518447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of the Local Instrumentation & Control (I&C) System for the Tokamak Physics Experiment (TPX) superconducting PF & TF magnets is presented. The local I&C system monitors the status of the magnet systems and initiates the proper control sequences to protect the magnets from any foreseeable fault. Local I&C also stores magnet-system data for analysis and archiving. Quench Detection for the TPX magnets must use a minimum of two independent sensing methods and is allowed a detection time of one second. Proposed detection methods include the measurement of; (1) normal-zone resistive voltage, (2) cooling-path helium flow, (3) local temperature in the winding pack, (4) local pressure in the winding pack. Fiber-optic based isolation systems are used to remove high common-mode magnet voltages and eliminate ground loops. The data acquisition and fault-detection systems are computer based. The design of the local I&C system incorporates redundant, fault-tolerant, and/or fail-safe features at all component levels. As part of a quench detection R&D plan, a Quench Detection Model Coil has been proposed to test all detection methods. Initial cost estimates and schedule for the local I&C system are presented.\",\"PeriodicalId\":365814,\"journal\":{\"name\":\"15th IEEE/NPSS Symposium. Fusion Engineering\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th IEEE/NPSS Symposium. Fusion Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUSION.1993.518447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th IEEE/NPSS Symposium. Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1993.518447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quench detection & instrumentation for the Tokamak Physics Experiment magnets
The design of the Local Instrumentation & Control (I&C) System for the Tokamak Physics Experiment (TPX) superconducting PF & TF magnets is presented. The local I&C system monitors the status of the magnet systems and initiates the proper control sequences to protect the magnets from any foreseeable fault. Local I&C also stores magnet-system data for analysis and archiving. Quench Detection for the TPX magnets must use a minimum of two independent sensing methods and is allowed a detection time of one second. Proposed detection methods include the measurement of; (1) normal-zone resistive voltage, (2) cooling-path helium flow, (3) local temperature in the winding pack, (4) local pressure in the winding pack. Fiber-optic based isolation systems are used to remove high common-mode magnet voltages and eliminate ground loops. The data acquisition and fault-detection systems are computer based. The design of the local I&C system incorporates redundant, fault-tolerant, and/or fail-safe features at all component levels. As part of a quench detection R&D plan, a Quench Detection Model Coil has been proposed to test all detection methods. Initial cost estimates and schedule for the local I&C system are presented.