{"title":"未来科学应用对记忆系统的要求:四个案例研究","authors":"Milan Pavlović, Yoav Etsion, Alex Ramírez","doi":"10.1109/IISWC.2011.6114176","DOIUrl":null,"url":null,"abstract":"In this paper, we observe and characterize the memory behaviour, and specifically memory footprint, memory bandwidth and cache effectiveness, of several well-known parallel scientific applications running on a large processor cluster. Based on the analysis of their instrumented execution, we project some performance requirements from future memory systems serving large-scale chip multiprocessors (CMPs). In addition, we estimate the impact of memory system performance on the amount of instruction stalls, as well as on the real computational performance, using the number of floating point operations per second the applications perform. Our projections show that the limitations of present memory technologies, either by means of capacity or bandwidth, will have a strong negative impact on scalability of memory systems for large CMPs. We conclude that future supercomputer systems require research on new alternative memory architectures, capable of offering both capacity and bandwidth beyond what current solutions provide.","PeriodicalId":367515,"journal":{"name":"2011 IEEE International Symposium on Workload Characterization (IISWC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"On the memory system requirements of future scientific applications: Four case-studies\",\"authors\":\"Milan Pavlović, Yoav Etsion, Alex Ramírez\",\"doi\":\"10.1109/IISWC.2011.6114176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we observe and characterize the memory behaviour, and specifically memory footprint, memory bandwidth and cache effectiveness, of several well-known parallel scientific applications running on a large processor cluster. Based on the analysis of their instrumented execution, we project some performance requirements from future memory systems serving large-scale chip multiprocessors (CMPs). In addition, we estimate the impact of memory system performance on the amount of instruction stalls, as well as on the real computational performance, using the number of floating point operations per second the applications perform. Our projections show that the limitations of present memory technologies, either by means of capacity or bandwidth, will have a strong negative impact on scalability of memory systems for large CMPs. We conclude that future supercomputer systems require research on new alternative memory architectures, capable of offering both capacity and bandwidth beyond what current solutions provide.\",\"PeriodicalId\":367515,\"journal\":{\"name\":\"2011 IEEE International Symposium on Workload Characterization (IISWC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Workload Characterization (IISWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC.2011.6114176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2011.6114176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the memory system requirements of future scientific applications: Four case-studies
In this paper, we observe and characterize the memory behaviour, and specifically memory footprint, memory bandwidth and cache effectiveness, of several well-known parallel scientific applications running on a large processor cluster. Based on the analysis of their instrumented execution, we project some performance requirements from future memory systems serving large-scale chip multiprocessors (CMPs). In addition, we estimate the impact of memory system performance on the amount of instruction stalls, as well as on the real computational performance, using the number of floating point operations per second the applications perform. Our projections show that the limitations of present memory technologies, either by means of capacity or bandwidth, will have a strong negative impact on scalability of memory systems for large CMPs. We conclude that future supercomputer systems require research on new alternative memory architectures, capable of offering both capacity and bandwidth beyond what current solutions provide.