漏洞评分估计的文本挖掘方法

Yasuhiro Yamamoto, Daisuke Miyamoto, M. Nakayama
{"title":"漏洞评分估计的文本挖掘方法","authors":"Yasuhiro Yamamoto, Daisuke Miyamoto, M. Nakayama","doi":"10.1109/BADGERS.2015.018","DOIUrl":null,"url":null,"abstract":"This paper develops a method that can automatically estimate the security metrics of documents written in natural language. Currently, security metrics play an important role in assessing the impact and risks of cyberthreats. Security metrics also enable operators to recognize emerging cyberthreats and to prioritize operations in order to mitigate such threats. In this paper, we focus on estimating the ratings in the Common Vulnerability Scoring System by inspecting the threats described in the Common Vulnerability and Exposures dictionary. Our approach employs various techniques for processing natural language, and it uses the descriptions in the dictionary to estimate the base metrics. This paper also extends the algorithm to increase the accuracy of the estimate.","PeriodicalId":150208,"journal":{"name":"2015 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Text-Mining Approach for Estimating Vulnerability Score\",\"authors\":\"Yasuhiro Yamamoto, Daisuke Miyamoto, M. Nakayama\",\"doi\":\"10.1109/BADGERS.2015.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a method that can automatically estimate the security metrics of documents written in natural language. Currently, security metrics play an important role in assessing the impact and risks of cyberthreats. Security metrics also enable operators to recognize emerging cyberthreats and to prioritize operations in order to mitigate such threats. In this paper, we focus on estimating the ratings in the Common Vulnerability Scoring System by inspecting the threats described in the Common Vulnerability and Exposures dictionary. Our approach employs various techniques for processing natural language, and it uses the descriptions in the dictionary to estimate the base metrics. This paper also extends the algorithm to increase the accuracy of the estimate.\",\"PeriodicalId\":150208,\"journal\":{\"name\":\"2015 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BADGERS.2015.018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BADGERS.2015.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本文提出了一种自动估计自然语言文档安全指标的方法。目前,安全指标在评估网络威胁的影响和风险方面发挥着重要作用。安全指标还使运营商能够识别新出现的网络威胁,并确定优先级,以减轻此类威胁。在本文中,我们主要通过检查公共漏洞和暴露字典中描述的威胁来估计公共漏洞评分系统中的等级。我们的方法采用各种技术来处理自然语言,并使用字典中的描述来估计基本指标。本文还对该算法进行了扩展,提高了估计的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text-Mining Approach for Estimating Vulnerability Score
This paper develops a method that can automatically estimate the security metrics of documents written in natural language. Currently, security metrics play an important role in assessing the impact and risks of cyberthreats. Security metrics also enable operators to recognize emerging cyberthreats and to prioritize operations in order to mitigate such threats. In this paper, we focus on estimating the ratings in the Common Vulnerability Scoring System by inspecting the threats described in the Common Vulnerability and Exposures dictionary. Our approach employs various techniques for processing natural language, and it uses the descriptions in the dictionary to estimate the base metrics. This paper also extends the algorithm to increase the accuracy of the estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信