Hendrik Roehm, Jens Oehlerking, M. Woehrle, M. Althoff
{"title":"混合自动机的一致性测试","authors":"Hendrik Roehm, Jens Oehlerking, M. Woehrle, M. Althoff","doi":"10.1145/2883817.2883828","DOIUrl":null,"url":null,"abstract":"Industrial-sized hybrid systems are typically not amenable to formal verification techniques. For this reason, a common approach is to formally verify abstractions of (parts of) the original system. However, we need to show that this abstraction conforms to the actual system implementation including its physical dynamics. In particular, verified properties of the abstract system need to transfer to the implementation. To this end, we introduce a formal conformance relation, called reachset conformance, which guarantees transference of safety properties, while being a weaker relation than the existing trace inclusion conformance. Based on this formal relation, we present a conformance testing method which allows us to tune the trade-off between accuracy and computational load. Additionally, we present a test selection algorithm that uses a coverage measure to reduce the number of test cases for conformance testing. We experimentally show the benefits of our novel techniques based on an example from autonomous driving.","PeriodicalId":337926,"journal":{"name":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Reachset Conformance Testing of Hybrid Automata\",\"authors\":\"Hendrik Roehm, Jens Oehlerking, M. Woehrle, M. Althoff\",\"doi\":\"10.1145/2883817.2883828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial-sized hybrid systems are typically not amenable to formal verification techniques. For this reason, a common approach is to formally verify abstractions of (parts of) the original system. However, we need to show that this abstraction conforms to the actual system implementation including its physical dynamics. In particular, verified properties of the abstract system need to transfer to the implementation. To this end, we introduce a formal conformance relation, called reachset conformance, which guarantees transference of safety properties, while being a weaker relation than the existing trace inclusion conformance. Based on this formal relation, we present a conformance testing method which allows us to tune the trade-off between accuracy and computational load. Additionally, we present a test selection algorithm that uses a coverage measure to reduce the number of test cases for conformance testing. We experimentally show the benefits of our novel techniques based on an example from autonomous driving.\",\"PeriodicalId\":337926,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2883817.2883828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2883817.2883828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Industrial-sized hybrid systems are typically not amenable to formal verification techniques. For this reason, a common approach is to formally verify abstractions of (parts of) the original system. However, we need to show that this abstraction conforms to the actual system implementation including its physical dynamics. In particular, verified properties of the abstract system need to transfer to the implementation. To this end, we introduce a formal conformance relation, called reachset conformance, which guarantees transference of safety properties, while being a weaker relation than the existing trace inclusion conformance. Based on this formal relation, we present a conformance testing method which allows us to tune the trade-off between accuracy and computational load. Additionally, we present a test selection algorithm that uses a coverage measure to reduce the number of test cases for conformance testing. We experimentally show the benefits of our novel techniques based on an example from autonomous driving.