应用机器学习算法和激光吸收光谱来解决在多组分气体混合物中测定低浓度组分的问题

V. Prischepa, V. Skiba, A. Borisov, D. Vrazhnov
{"title":"应用机器学习算法和激光吸收光谱来解决在多组分气体混合物中测定低浓度组分的问题","authors":"V. Prischepa, V. Skiba, A. Borisov, D. Vrazhnov","doi":"10.1117/12.2614040","DOIUrl":null,"url":null,"abstract":"This article describes the methods and approaches used by us to solve the problem of a high error in the determination of a component with a low concentration in a gas mixture. The approaches based on the modification of the machine learning model were considered, the approach to the generation of the training sample was changed, an iterative method for increasing the accuracy of the model results was proposed.","PeriodicalId":205170,"journal":{"name":"Atomic and Molecular Pulsed Lasers","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of machine learning algorithms and laser absorption spectroscopy to solve the problem of determining components with a low concentration in multicomponent gas mixtures\",\"authors\":\"V. Prischepa, V. Skiba, A. Borisov, D. Vrazhnov\",\"doi\":\"10.1117/12.2614040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the methods and approaches used by us to solve the problem of a high error in the determination of a component with a low concentration in a gas mixture. The approaches based on the modification of the machine learning model were considered, the approach to the generation of the training sample was changed, an iterative method for increasing the accuracy of the model results was proposed.\",\"PeriodicalId\":205170,\"journal\":{\"name\":\"Atomic and Molecular Pulsed Lasers\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic and Molecular Pulsed Lasers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2614040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic and Molecular Pulsed Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2614040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了我们用来解决气体混合物中低浓度组分测定误差大的问题的方法和途径。考虑了基于机器学习模型修正的方法,改变了训练样本生成的方法,提出了一种提高模型结果精度的迭代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of machine learning algorithms and laser absorption spectroscopy to solve the problem of determining components with a low concentration in multicomponent gas mixtures
This article describes the methods and approaches used by us to solve the problem of a high error in the determination of a component with a low concentration in a gas mixture. The approaches based on the modification of the machine learning model were considered, the approach to the generation of the training sample was changed, an iterative method for increasing the accuracy of the model results was proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信