Kiyoung Kim, Jongryeol Jeong, Hyungkyoo Kim, S. Cha, W. Lim
{"title":"利用正向模拟器分析分离轴转矩组合并联混合动力系统在不同工况下的车辆状态","authors":"Kiyoung Kim, Jongryeol Jeong, Hyungkyoo Kim, S. Cha, W. Lim","doi":"10.1109/VPPC.2014.7007021","DOIUrl":null,"url":null,"abstract":"The paper presents closed-loop electric vehicle (EV) drive with 5-phase induction motor operating with switched-autotransformer (LCCAt) inverter. Electrical drives with five-phase induction motors are considered for application in electric vehicles. Space vector modulation (SVM) is the most common options for controlling a five-phase inverter. However, if the battery level cannot ensure the controllability over a wide speed range of EV drive, the supply voltage has to be elevated. Bidirectional impedance source inverters (e.g. Z- source inverter, qZ-source inverter) have been presented suitable for EVs. The concept of Z-source inverters has been recently extended to transformer-based inverters (e.g. Trans-Z-source inverter, T - source inverter) which use coupled inductors with an appropriate turns ratio. Unfortunately, coupled inductors store significant portion of the energy during boost operation which tends their cores to saturate at higher currents. The use of four element LCCAt-source (inductor-capacitor-capacitor- autotransformer) network allows proposed switched- autotransformer inverter for obtaining high voltage gain while ensuring high modulation index and reduced volume of inductive elements. Simulation and experimental results using the laboratory model of switched-autotransformer inverter with designed 4.3 kW, 30V five-phase induction motor are shown to verify the effectiveness of the proposed system.","PeriodicalId":133160,"journal":{"name":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Vehicle Status in Various Driving Situations for a Separated Axle Torque Combination Parallel Hybrid System Using Forward Simulator\",\"authors\":\"Kiyoung Kim, Jongryeol Jeong, Hyungkyoo Kim, S. Cha, W. Lim\",\"doi\":\"10.1109/VPPC.2014.7007021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents closed-loop electric vehicle (EV) drive with 5-phase induction motor operating with switched-autotransformer (LCCAt) inverter. Electrical drives with five-phase induction motors are considered for application in electric vehicles. Space vector modulation (SVM) is the most common options for controlling a five-phase inverter. However, if the battery level cannot ensure the controllability over a wide speed range of EV drive, the supply voltage has to be elevated. Bidirectional impedance source inverters (e.g. Z- source inverter, qZ-source inverter) have been presented suitable for EVs. The concept of Z-source inverters has been recently extended to transformer-based inverters (e.g. Trans-Z-source inverter, T - source inverter) which use coupled inductors with an appropriate turns ratio. Unfortunately, coupled inductors store significant portion of the energy during boost operation which tends their cores to saturate at higher currents. The use of four element LCCAt-source (inductor-capacitor-capacitor- autotransformer) network allows proposed switched- autotransformer inverter for obtaining high voltage gain while ensuring high modulation index and reduced volume of inductive elements. Simulation and experimental results using the laboratory model of switched-autotransformer inverter with designed 4.3 kW, 30V five-phase induction motor are shown to verify the effectiveness of the proposed system.\",\"PeriodicalId\":133160,\"journal\":{\"name\":\"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC.2014.7007021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2014.7007021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Vehicle Status in Various Driving Situations for a Separated Axle Torque Combination Parallel Hybrid System Using Forward Simulator
The paper presents closed-loop electric vehicle (EV) drive with 5-phase induction motor operating with switched-autotransformer (LCCAt) inverter. Electrical drives with five-phase induction motors are considered for application in electric vehicles. Space vector modulation (SVM) is the most common options for controlling a five-phase inverter. However, if the battery level cannot ensure the controllability over a wide speed range of EV drive, the supply voltage has to be elevated. Bidirectional impedance source inverters (e.g. Z- source inverter, qZ-source inverter) have been presented suitable for EVs. The concept of Z-source inverters has been recently extended to transformer-based inverters (e.g. Trans-Z-source inverter, T - source inverter) which use coupled inductors with an appropriate turns ratio. Unfortunately, coupled inductors store significant portion of the energy during boost operation which tends their cores to saturate at higher currents. The use of four element LCCAt-source (inductor-capacitor-capacitor- autotransformer) network allows proposed switched- autotransformer inverter for obtaining high voltage gain while ensuring high modulation index and reduced volume of inductive elements. Simulation and experimental results using the laboratory model of switched-autotransformer inverter with designed 4.3 kW, 30V five-phase induction motor are shown to verify the effectiveness of the proposed system.