基于顺序修补和变保真度EM模型的快速多目标天线优化

S. Koziel, A. Bekasiewicz
{"title":"基于顺序修补和变保真度EM模型的快速多目标天线优化","authors":"S. Koziel, A. Bekasiewicz","doi":"10.1109/LAPC.2015.7366067","DOIUrl":null,"url":null,"abstract":"In this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained by means of single-objective optimization runs). For the sake of computational efficiency, the patching process is realized at the level of coarse-discretization EM simulation model. The final Pareto front is obtained through surrogate-based optimization, and it is reusing the EM simulation data acquired at the initial design stage. The proposed approach is demonstrated using the example of an ultrawideband monopole antenna.","PeriodicalId":339610,"journal":{"name":"2015 Loughborough Antennas & Propagation Conference (LAPC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast multi-objective antenna optimization using sequential patching and variable-fidelity EM models\",\"authors\":\"S. Koziel, A. Bekasiewicz\",\"doi\":\"10.1109/LAPC.2015.7366067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained by means of single-objective optimization runs). For the sake of computational efficiency, the patching process is realized at the level of coarse-discretization EM simulation model. The final Pareto front is obtained through surrogate-based optimization, and it is reusing the EM simulation data acquired at the initial design stage. The proposed approach is demonstrated using the example of an ultrawideband monopole antenna.\",\"PeriodicalId\":339610,\"journal\":{\"name\":\"2015 Loughborough Antennas & Propagation Conference (LAPC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Loughborough Antennas & Propagation Conference (LAPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAPC.2015.7366067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Loughborough Antennas & Propagation Conference (LAPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAPC.2015.7366067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种天线结构快速多目标优化设计方法。在我们的方法中,通过对设计空间的顺序修补,获得了代表冲突设计目标之间最佳可能权衡的帕累托集的初始近似值。后者是一种基于模板的搜索,旨在创建一条连接极端帕累托最优设计的路径(通过单目标优化运行获得)。为了提高计算效率,拼接过程在粗离散化电磁仿真模型层面实现。最终的Pareto front是通过基于代理的优化得到的,该优化利用了初始设计阶段获得的电磁仿真数据。以超宽带单极天线为例,对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast multi-objective antenna optimization using sequential patching and variable-fidelity EM models
In this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained by means of single-objective optimization runs). For the sake of computational efficiency, the patching process is realized at the level of coarse-discretization EM simulation model. The final Pareto front is obtained through surrogate-based optimization, and it is reusing the EM simulation data acquired at the initial design stage. The proposed approach is demonstrated using the example of an ultrawideband monopole antenna.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信