{"title":"基于卷积神经网络的铝合金冷喷涂微观组织特征提取实例研究","authors":"Siyu Tu, P. Vo","doi":"10.31399/asm.cp.itsc2023p0009","DOIUrl":null,"url":null,"abstract":"\n The use of process-microstructure-property relationships for cold spray can significantly reduce application development cost and time compared to legacy trial and error strategies. However, due to the heterogeneous microstructure of a cold spray deposit, with (prior) particle boundaries outlining consolidated splats (deformed particles) in the as-spray condition, the use of automated analysis methods is challenging. In this work, we demonstrate the utility of quantitative data developed from a convolutional neural network (CNN) for feature extraction of cold spray microstructures. Specifically, the power of CNN is harnessed to automatically segment the deformed particles, which is hardly accessible at scale with traditional image processing techniques. Deposits produced with various processing conditions are evaluated with metallography. Parameters related to particle morphology such as compactness are also quantified and correlated to strength.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case Study on the Application of Microstructural Features Extracted by Convolutional Neural Network for Cold Spray of Aluminum Alloys\",\"authors\":\"Siyu Tu, P. Vo\",\"doi\":\"10.31399/asm.cp.itsc2023p0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The use of process-microstructure-property relationships for cold spray can significantly reduce application development cost and time compared to legacy trial and error strategies. However, due to the heterogeneous microstructure of a cold spray deposit, with (prior) particle boundaries outlining consolidated splats (deformed particles) in the as-spray condition, the use of automated analysis methods is challenging. In this work, we demonstrate the utility of quantitative data developed from a convolutional neural network (CNN) for feature extraction of cold spray microstructures. Specifically, the power of CNN is harnessed to automatically segment the deformed particles, which is hardly accessible at scale with traditional image processing techniques. Deposits produced with various processing conditions are evaluated with metallography. Parameters related to particle morphology such as compactness are also quantified and correlated to strength.\",\"PeriodicalId\":114755,\"journal\":{\"name\":\"International Thermal Spray Conference\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Thermal Spray Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.itsc2023p0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Thermal Spray Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.itsc2023p0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Case Study on the Application of Microstructural Features Extracted by Convolutional Neural Network for Cold Spray of Aluminum Alloys
The use of process-microstructure-property relationships for cold spray can significantly reduce application development cost and time compared to legacy trial and error strategies. However, due to the heterogeneous microstructure of a cold spray deposit, with (prior) particle boundaries outlining consolidated splats (deformed particles) in the as-spray condition, the use of automated analysis methods is challenging. In this work, we demonstrate the utility of quantitative data developed from a convolutional neural network (CNN) for feature extraction of cold spray microstructures. Specifically, the power of CNN is harnessed to automatically segment the deformed particles, which is hardly accessible at scale with traditional image processing techniques. Deposits produced with various processing conditions are evaluated with metallography. Parameters related to particle morphology such as compactness are also quantified and correlated to strength.