一种新的基于Voronoi图的手形定位算法

Shenghua Wang, Fu Liu, Huiying Liu, Shoukun Jiang
{"title":"一种新的基于Voronoi图的手形定位算法","authors":"Shenghua Wang, Fu Liu, Huiying Liu, Shoukun Jiang","doi":"10.1109/CHICC.2016.7553996","DOIUrl":null,"url":null,"abstract":"For the problem of inaccurate accuracy caused by deformation region of hand shape contour in traditional hand shape recognition algorithms, this paper proposes a new hand shape positioning algorithm based on Voronoi diagram. The algorithm first extracts the hand shape contour. And using the geometric information of the finger, this algorithm accurately extract the central axis of the fingers based on Voronoi diagram. This paper also identifies the optimal value of the threshold of normalized feature deviation and overall feature deviation, etc. Finally, the extracted finger width feature is used to recognize and match. Under the constraint of the false rejection rate and the error acceptance rate, recognition rate as high as 98. 952%. And the algorithm has low complexity and high accuracy and stability.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new hand shape positioning algorithm based on Voronoi diagram\",\"authors\":\"Shenghua Wang, Fu Liu, Huiying Liu, Shoukun Jiang\",\"doi\":\"10.1109/CHICC.2016.7553996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the problem of inaccurate accuracy caused by deformation region of hand shape contour in traditional hand shape recognition algorithms, this paper proposes a new hand shape positioning algorithm based on Voronoi diagram. The algorithm first extracts the hand shape contour. And using the geometric information of the finger, this algorithm accurately extract the central axis of the fingers based on Voronoi diagram. This paper also identifies the optimal value of the threshold of normalized feature deviation and overall feature deviation, etc. Finally, the extracted finger width feature is used to recognize and match. Under the constraint of the false rejection rate and the error acceptance rate, recognition rate as high as 98. 952%. And the algorithm has low complexity and high accuracy and stability.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHICC.2016.7553996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2016.7553996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对传统手形识别算法中由于手形轮廓变形区域导致精度不准确的问题,提出了一种新的基于Voronoi图的手形定位算法。该算法首先提取手的形状轮廓。该算法利用手指的几何信息,基于Voronoi图准确提取手指的中轴线。本文还确定了归一化特征偏差阈值和总体特征偏差阈值等的最优值。最后利用提取的手指宽度特征进行识别和匹配。在错误拒绝率和错误接受率的约束下,识别率高达98。952%。该算法具有复杂度低、精度高、稳定性好等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new hand shape positioning algorithm based on Voronoi diagram
For the problem of inaccurate accuracy caused by deformation region of hand shape contour in traditional hand shape recognition algorithms, this paper proposes a new hand shape positioning algorithm based on Voronoi diagram. The algorithm first extracts the hand shape contour. And using the geometric information of the finger, this algorithm accurately extract the central axis of the fingers based on Voronoi diagram. This paper also identifies the optimal value of the threshold of normalized feature deviation and overall feature deviation, etc. Finally, the extracted finger width feature is used to recognize and match. Under the constraint of the false rejection rate and the error acceptance rate, recognition rate as high as 98. 952%. And the algorithm has low complexity and high accuracy and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信