O. Mendoza-Schrock, M. Rizki, V. Velten
{"title":"流形转移子空间学习在辅助目标识别中的应用","authors":"O. Mendoza-Schrock, M. Rizki, V. Velten","doi":"10.4018/IJMSTR.2017070102","DOIUrl":null,"url":null,"abstract":"Thisarticledescribeshowtransfersubspacelearninghasrecentlygainedpopularity foritsabilitytoperformcross-datasetandcross-domainobjectrecognition.Theability toleverageexistingdatawithouttheneedforadditionaldatacollectionsisattractive formonitoringandsurveillancetechnology,specificallyforaidedtargetrecognition applications. Transfer subspace learning enables the incorporation of sparse and dynamicallycollecteddataintoexistingsystemsthatutilizelargedatabases.Manifold learninghasalsogainedpopularityforitssuccessatdimensionalityreduction.Inthis contribution,Manifoldlearningandtransfersubspacelearningarecombinedtocreate anewsystemcapableofachievinghightargetrecognitionrates.Themanifoldlearning technique used in this contribution is diffusion maps, a nonlinear dimensionality reductiontechniquebasedonaheatdiffusionanalogy.Thetransfersubspacelearning techniqueusedisTransferFisher’sLinearDiscriminativeAnalysis.Thenewsystem, manifold transfer subspace learning, sequentially integrates manifold learning and transfersubspacelearning.Inthisarticle,theabilityofthenewtechniquestoachieve high target recognition rates for cross-dataset and cross-domain applications is illustratedusingavarietyofdiversedatasets. KeywoRdS Diffusion Maps, Manifold Learning, Target Recognition, Transfer Learning, Transfer Subspace Learning","PeriodicalId":170761,"journal":{"name":"Int. J. Monit. Surveillance Technol. Res.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold Transfer Subspace Learning (MTSL) for Applications in Aided Target Recognition\",\"authors\":\"O. Mendoza-Schrock, M. Rizki, V. Velten\",\"doi\":\"10.4018/IJMSTR.2017070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thisarticledescribeshowtransfersubspacelearninghasrecentlygainedpopularity foritsabilitytoperformcross-datasetandcross-domainobjectrecognition.Theability toleverageexistingdatawithouttheneedforadditionaldatacollectionsisattractive formonitoringandsurveillancetechnology,specificallyforaidedtargetrecognition applications. Transfer subspace learning enables the incorporation of sparse and dynamicallycollecteddataintoexistingsystemsthatutilizelargedatabases.Manifold learninghasalsogainedpopularityforitssuccessatdimensionalityreduction.Inthis contribution,Manifoldlearningandtransfersubspacelearningarecombinedtocreate anewsystemcapableofachievinghightargetrecognitionrates.Themanifoldlearning technique used in this contribution is diffusion maps, a nonlinear dimensionality reductiontechniquebasedonaheatdiffusionanalogy.Thetransfersubspacelearning techniqueusedisTransferFisher’sLinearDiscriminativeAnalysis.Thenewsystem, manifold transfer subspace learning, sequentially integrates manifold learning and transfersubspacelearning.Inthisarticle,theabilityofthenewtechniquestoachieve high target recognition rates for cross-dataset and cross-domain applications is illustratedusingavarietyofdiversedatasets. KeywoRdS Diffusion Maps, Manifold Learning, Target Recognition, Transfer Learning, Transfer Subspace Learning\",\"PeriodicalId\":170761,\"journal\":{\"name\":\"Int. J. Monit. Surveillance Technol. Res.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Monit. Surveillance Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJMSTR.2017070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Monit. Surveillance Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJMSTR.2017070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Manifold Transfer Subspace Learning (MTSL) for Applications in Aided Target Recognition
Thisarticledescribeshowtransfersubspacelearninghasrecentlygainedpopularity foritsabilitytoperformcross-datasetandcross-domainobjectrecognition.Theability toleverageexistingdatawithouttheneedforadditionaldatacollectionsisattractive formonitoringandsurveillancetechnology,specificallyforaidedtargetrecognition applications. Transfer subspace learning enables the incorporation of sparse and dynamicallycollecteddataintoexistingsystemsthatutilizelargedatabases.Manifold learninghasalsogainedpopularityforitssuccessatdimensionalityreduction.Inthis contribution,Manifoldlearningandtransfersubspacelearningarecombinedtocreate anewsystemcapableofachievinghightargetrecognitionrates.Themanifoldlearning technique used in this contribution is diffusion maps, a nonlinear dimensionality reductiontechniquebasedonaheatdiffusionanalogy.Thetransfersubspacelearning techniqueusedisTransferFisher’sLinearDiscriminativeAnalysis.Thenewsystem, manifold transfer subspace learning, sequentially integrates manifold learning and transfersubspacelearning.Inthisarticle,theabilityofthenewtechniquestoachieve high target recognition rates for cross-dataset and cross-domain applications is illustratedusingavarietyofdiversedatasets. KeywoRdS Diffusion Maps, Manifold Learning, Target Recognition, Transfer Learning, Transfer Subspace Learning