图的拉普拉斯矩阵的Nordhaus-Gaddum型的新界

Tianfei Wang, Bin Li, Jin Zou, Feng Sun, Zhihe Zhang
{"title":"图的拉普拉斯矩阵的Nordhaus-Gaddum型的新界","authors":"Tianfei Wang, Bin Li, Jin Zou, Feng Sun, Zhihe Zhang","doi":"10.1109/CIS.2012.98","DOIUrl":null,"url":null,"abstract":"The Laplacian matrix is the difference of the diagonal matrix of vertex degrees and the adjacency matrix of a graph G. In this paper, we first give two sharp upper bounds for the radius of the Laplacian spectrum of G in terms of the edge number, the vertex number, the largest degree, the second largest degree and the smallest degree of G by applying non-negative matrix theory and graph theory. Then, two upper bounds of the NordhausGaddum type are obtained for the sum of Laplacian spectral radius of a connected graph and its connected complement. Moreover, we determine all extremal graphs which achieve these upper bounds. Finally, one numerical example illustrate that our results are better than the existing results in some sense.","PeriodicalId":294394,"journal":{"name":"2012 Eighth International Conference on Computational Intelligence and Security","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Bounds of the Nordhaus-Gaddum Type of the Laplacian Matrix of Graphs\",\"authors\":\"Tianfei Wang, Bin Li, Jin Zou, Feng Sun, Zhihe Zhang\",\"doi\":\"10.1109/CIS.2012.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Laplacian matrix is the difference of the diagonal matrix of vertex degrees and the adjacency matrix of a graph G. In this paper, we first give two sharp upper bounds for the radius of the Laplacian spectrum of G in terms of the edge number, the vertex number, the largest degree, the second largest degree and the smallest degree of G by applying non-negative matrix theory and graph theory. Then, two upper bounds of the NordhausGaddum type are obtained for the sum of Laplacian spectral radius of a connected graph and its connected complement. Moreover, we determine all extremal graphs which achieve these upper bounds. Finally, one numerical example illustrate that our results are better than the existing results in some sense.\",\"PeriodicalId\":294394,\"journal\":{\"name\":\"2012 Eighth International Conference on Computational Intelligence and Security\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Eighth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2012.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Eighth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2012.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拉普拉斯矩阵是图G的顶点度对角矩阵与邻接矩阵之差。本文首先利用非负矩阵理论和图论,给出了G的边数、顶点数、最大次、第二次和最小次的拉普拉斯谱半径的两个明确的上界。然后,得到连通图的拉普拉斯谱半径与其连通补的和的两个NordhausGaddum型上界。此外,我们确定了所有达到这些上界的极值图。最后通过一个算例说明,本文的计算结果在一定程度上优于现有的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Bounds of the Nordhaus-Gaddum Type of the Laplacian Matrix of Graphs
The Laplacian matrix is the difference of the diagonal matrix of vertex degrees and the adjacency matrix of a graph G. In this paper, we first give two sharp upper bounds for the radius of the Laplacian spectrum of G in terms of the edge number, the vertex number, the largest degree, the second largest degree and the smallest degree of G by applying non-negative matrix theory and graph theory. Then, two upper bounds of the NordhausGaddum type are obtained for the sum of Laplacian spectral radius of a connected graph and its connected complement. Moreover, we determine all extremal graphs which achieve these upper bounds. Finally, one numerical example illustrate that our results are better than the existing results in some sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信