{"title":"对称有理矩阵的签名与李群的酉对偶","authors":"Jeffrey Adams, B. D. Saunders, Z. Wan","doi":"10.1145/1073884.1073889","DOIUrl":null,"url":null,"abstract":"A key step in the computation of the unitary dual of a Lie group is the determination if certain rational symmetric matrices are positive semi-definite. The size of some of the computations dictates that high performance integer matrix computations be used. We explore the feasibility of this approach by developing three algorithms for integer symmetric matrix signature and studying their performance both asymptotically and experimentally on a particular matrix family constructed from the exceptional Weyl group E8. We conclude that the computation is doable, with a parallel implementation needed for the largest representations.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Signature of symmetric rational matrices and the unitary dual of lie groups\",\"authors\":\"Jeffrey Adams, B. D. Saunders, Z. Wan\",\"doi\":\"10.1145/1073884.1073889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key step in the computation of the unitary dual of a Lie group is the determination if certain rational symmetric matrices are positive semi-definite. The size of some of the computations dictates that high performance integer matrix computations be used. We explore the feasibility of this approach by developing three algorithms for integer symmetric matrix signature and studying their performance both asymptotically and experimentally on a particular matrix family constructed from the exceptional Weyl group E8. We conclude that the computation is doable, with a parallel implementation needed for the largest representations.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Signature of symmetric rational matrices and the unitary dual of lie groups
A key step in the computation of the unitary dual of a Lie group is the determination if certain rational symmetric matrices are positive semi-definite. The size of some of the computations dictates that high performance integer matrix computations be used. We explore the feasibility of this approach by developing three algorithms for integer symmetric matrix signature and studying their performance both asymptotically and experimentally on a particular matrix family constructed from the exceptional Weyl group E8. We conclude that the computation is doable, with a parallel implementation needed for the largest representations.